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Part I

Frequency Moments

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 28



Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B � m) and hence cannot store all the input

Want to compute interesting functions over input

Examples:

Each token in a number from [n]

High-speed network switch: tokens are packets with source,
destination IP addresses and message contents.

Each token is an edge in graph (graph streams)

Each token in a point in some feature space

Each token is a row/column of a matrix
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Frequency Moment Problem(s)

A fundamental class of problems

Formally introduced in the seminal paper of Alon Matias,
Szegedy titled “The Space Complexity of Approximating the
Frequency Moments” in 1999.

Stream consists of e1, e2, . . . , em where each ei is an integer in [n].
We know n in advance (or an upper bound)

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5
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Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream

Consider vector f = (f1, f2, . . . , fn)

For k ≥ 0 the k ’th frequency moment Fk =
∑

i f
k
i . We can

also consider the `k norm of f which is (Fk)1/k .

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5
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Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k ≥ 0 the k ’th frequency moment Fk =
∑

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =∞: F∞ is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <∞
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Frequency Moments: Questions

Estimation

Given a stream and k can we estimate Fk exactly/approximately with
small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f k
i ?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory Ω(n): store f explicitly.
Interesting when memory is� n. Ideally want to do it with logc n
memory for some fixed c ≥ 1 (polylog(n)). Note that log n is
roughly the memory required to store one token/number.
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Need for approximation and randomization

For most of the interesting problems Ω(n) lower bound on memory if
one wants exact answer or wants deterministic algorithms.

Hence

focus on (1± ε)-approximation or constant factor approximation

and randomized algorithms
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Relative approximation

Let g(σ) be a real-valued non-negative function over streams σ.

Definition

Let A(σ) be the real-valued output of a randomized streaming
algorithm on stream σ. We say that A provides an (α, β) relative
approximation for a real-valued function g if for all σ:

Pr

[
|
A(σ)

g(σ)
− 1| > α

]
≤ β.

Our ideal goal is to obtain a (ε, δ)-approximation for any given
ε, δ ∈ (0, 1).
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Additive approximation

Let g(σ) be a real-valued function over streams σ. If g(σ) can be
negative, focus on additive approximation.

Definition

Let A(σ) be the real-valued output of a randomized streaming
algorithm on stream σ. We say that A provides an (α, β) additive
approximation for a real-valued function g if for all σ:

Pr [|A(σ)− g(σ)| > α] ≤ β.

When working with additive approximations some
normalization/scaling is typically necessary. Our ideal goal is to
obtain a (ε, δ)-approximation for any given ε, δ ∈ (0, 1).
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Part II

Estimating Distinct Elements
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Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many
distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure
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Offline Solution

DistinctElements
Initialize dictionary D to be empty

k ← 0
While (stream is not empty) do

Let e be next item in stream

If (e 6∈ D) then

Insert e into D
k ← k + 1

EndWhile

Output k

Which dictionary data structure?

Binary search trees: space O(k) and total time O(m log k)

Hashing: space O(k) and expected time O(m).
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Hashing based idea

Use hash function h : [n]→ [N] for some N polynomial in n.

Store only the minimum hash value seen. That is minei h(ei).
Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

Assume idealized hash function: h : [n]→ [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?
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Analyzing idealized hash function

Lemma

Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then

E[Y ] = 1
(k+1)

.

DistinctElements
Assume ideal hash function h : [n]→ [0, 1]
y ← 1
While (stream is not empty) do

Let e be next item in stream

y ← min(y , h(e))
EndWhile

Output 1
y − 1
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Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to
good bounds:

average h parallel and independent estimates to reduce variance

apply Chebyshev to show that the average estimator is a
(1 + ε)-approximation with constant probability

use preceding and median trick with O(log 1/δ) parallel copies
to obtain a (1 + ε)-approximation with probability (1− δ)
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Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z − 1

Claim: E[Z ] = 1
(k+1)

and Var(Z) ≤ 1
h

1
(k+1)2 .

Choosing h = 1/(ηε2) and using Chebyshev:

Pr
[
|Z − 1

k+1
| ≥ ε

k+1

]
≤ η.

Hence Pr
[
|( 1

Z − 1)− k|
]
≥ O(ε)k ≤ η.

Repeat O(log 1/δ) times and output median. Error probability < δ.
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Algorithm via regular hashing

Do not have idealized hash function.

Use h : [n]→ [N] for appropriate choice of N
Use pairwise independent hash family H so that random h ∈ H
can be stored in small space and computation can be done in
small memory and fast

Several variants of idea with different trade offs between

memory

time to process each new element of the stream

approximation quality and probability of success
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