
CS 498ABD: Algorithms for Big Data

Frequency moments and
Counting Distinct Elements
Lecture 05
September 8, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 28

Part I

Frequency Moments

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 28

Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B ⌧ m) and hence cannot store all the input

Want to compute interesting functions over input

Examples:

Each token in a number from [n]

High-speed network switch: tokens are packets with source,
destination IP addresses and message contents.

Each token is an edge in graph (graph streams)

Each token in a point in some feature space

Each token is a row/column of a matrix

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 28

Frequency Moment Problem(s)

A fundamental class of problems

Formally introduced in the seminal paper of Alon Matias,
Szegedy titled “The Space Complexity of Approximating the
Frequency Moments” in 1999.

Stream consists of e1, e2, . . . , em where each ei is an integer in [n].
We know n in advance (or an upper bound)

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 28

1

Frequency Moment Problem(s)

A fundamental class of problems

Formally introduced in the seminal paper of Alon Matias,
Szegedy titled “The Space Complexity of Approximating the
Frequency Moments” in 1999.

Stream consists of e1, e2, . . . , em where each ei is an integer in [n].
We know n in advance (or an upper bound)

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 28

=

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream

Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i . We can

also consider the `k norm of f which is (Fk)1/k .

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 28

⇒
I

m=8 f , =3 fit f,
-
- O tu =3 tf I

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

=

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i .

Important cases/regimes:

k = 0: F0 is simply the number of distinct elements in stream

k = 1: F1 is the length of stream which is easy

k = 2: F2 is fundamental in many ways as we will see

k =1: F1 is the maximum frequency (heavy hitters prob)

0 < k < 1 and 1 < k < 2

2 < k <1

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Frequency Moments: Questions

Estimation

Given a stream and k can we estimate Fk exactly/approximately with
small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f
k
i ?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory ⌦(n): store f explicitly.
Interesting when memory is⌧ n. Ideally want to do it with logc

n

memory for some fixed c � 1 (polylog(n)). Note that log n is
roughly the memory required to store one token/number.

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

Frequency Moments: Questions

Estimation

Given a stream and k can we estimate Fk exactly/approximately with
small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f
k
i ?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory ⌦(n): store f explicitly.
Interesting when memory is⌧ n. Ideally want to do it with logc

n

memory for some fixed c � 1 (polylog(n)). Note that log n is
roughly the memory required to store one token/number.

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

Frequency Moments: Questions

Estimation

Given a stream and k can we estimate Fk exactly/approximately with
small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f
k
i ?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory ⌦(n): store f explicitly.
Interesting when memory is⌧ n. Ideally want to do it with logc

n

memory for some fixed c � 1 (polylog(n)). Note that log n is
roughly the memory required to store one token/number.

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

Frequency Moments: Questions

Estimation

Given a stream and k can we estimate Fk exactly/approximately with
small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f
k
i ?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory ⌦(n): store f explicitly.
Interesting when memory is⌧ n. Ideally want to do it with logc

n

memory for some fixed c � 1 (polylog(n)). Note that log n is
roughly the memory required to store one token/number.

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

Need for approximation and randomization

For most of the interesting problems ⌦(n) lower bound on memory if
one wants exact answer or wants deterministic algorithms.

Hence

focus on (1± ✏)-approximation or constant factor approximation

and randomized algorithms

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 28

Need for approximation and randomization

For most of the interesting problems ⌦(n) lower bound on memory if
one wants exact answer or wants deterministic algorithms. Hence

focus on (1± ✏)-approximation or constant factor approximation

and randomized algorithms

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 28

Need for approximation and randomization

For most of the interesting problems ⌦(n) lower bound on memory if
one wants exact answer or wants deterministic algorithms. Hence

focus on (1± ✏)-approximation or constant factor approximation

and randomized algorithms

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 28

Relative approximation

Let g(�) be a real-valued non-negative function over streams �.

Definition

Let A(�) be the real-valued output of a randomized streaming
algorithm on stream �. We say that A provides an (↵,�) relative
approximation for a real-valued function g if for all �:

Pr


|
A(�)

g(�)
� 1| > ↵

�
 �.

Our ideal goal is to obtain a (✏, �)-approximation for any given
✏, � 2 (0, 1).

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Additive approximation

Let g(�) be a real-valued function over streams �. If g(�) can be
negative, focus on additive approximation.

Definition

Let A(�) be the real-valued output of a randomized streaming
algorithm on stream �. We say that A provides an (↵,�) additive
approximation for a real-valued function g if for all �:

Pr [|A(�)� g(�)| > ↵]  �.

When working with additive approximations some
normalization/scaling is typically necessary. Our ideal goal is to
obtain a (✏, �)-approximation for any given ✏, � 2 (0, 1).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Part II

Estimating Distinct Elements

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 28

Distinct Elements

Given a stream � how many distinct elements did we see?

Example: in a network switch, during some time window how many
distinct destination (or source) IP addresses were seen in the packets?

O✏ine solution? via Dictionary data structure

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 28

I , 1,1 , I , , - - l

l , to , 1,1 , I ,
I
, 5,5 , I , 1,1 , . . , I

Distinct Elements

Given a stream � how many distinct elements did we see?

Example: in a network switch, during some time window how many
distinct destination (or source) IP addresses were seen in the packets?

O✏ine solution?

via Dictionary data structure

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 28

Distinct Elements

Given a stream � how many distinct elements did we see?

Example: in a network switch, during some time window how many
distinct destination (or source) IP addresses were seen in the packets?

O✏ine solution? via Dictionary data structure

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 28

O✏ine Solution

DistinctElements
Initialize dictionary D to be empty

k 0
While (stream is not empty) do

Let e be next item in stream

If (e 62 D) then

Insert e into D

k k + 1
EndWhile

Output k

Which dictionary data structure?

Binary search trees: space O(k) and total time O(m log k)

Hashing: space O(k) and expected time O(m).

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 28

O✏ine Solution

DistinctElements
Initialize dictionary D to be empty

k 0
While (stream is not empty) do

Let e be next item in stream

If (e 62 D) then

Insert e into D

k k + 1
EndWhile

Output k

Which dictionary data structure?

Binary search trees: space O(k) and total time O(m log k)

Hashing: space O(k) and expected time O(m).

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 28

O✏ine Solution

DistinctElements
Initialize dictionary D to be empty

k 0
While (stream is not empty) do

Let e be next item in stream

If (e 62 D) then

Insert e into D

k k + 1
EndWhile

Output k

Which dictionary data structure?

Binary search trees: space O(k) and total time O(m log k)

Hashing: space O(k) and expected time O(m).

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 28

Hashing based idea

Use hash function h : [n]! [N] for some N polynomial in n.

Store only the minimum hash value seen. That is minei h(ei).
Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

Assume idealized hash function: h : [n]! [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

= = = =

UN z @ n)

Hashing based idea

Use hash function h : [n]! [N] for some N polynomial in n.

Store only the minimum hash value seen. That is minei h(ei).
Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

Assume idealized hash function: h : [n]! [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

Hashing based idea

Use hash function h : [n]! [N] for some N polynomial in n.

Store only the minimum hash value seen. That is minei h(ei).
Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

Assume idealized hash function: h : [n]! [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

I , I 101 Is 1 , I 2. , toe , 5 .

Hashing based idea

Use hash function h : [n]! [N] for some N polynomial in n.

Store only the minimum hash value seen. That is minei h(ei).
Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

Assume idealized hash function: h : [n]! [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

-

Analyzing idealized hash function

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E[Y] = 1

(k+1)
.

DistinctElements
Assume ideal hash function h : [n]! [0, 1]
y 1
While (stream is not empty) do

Let e be next item in stream

y min(y , h(e))
EndWhile

Output
1
y � 1

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 28

Daly C- Et ,ttdt]] tttdt
1*-1

-

- Lk,) -HEE'LL. o#- → i

EAT -- so
'

1st
"

? :&'s
""-9dg

Ftl
'

Analyzing idealized hash function

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E[Y] = 1

(k+1)
.

DistinctElements
Assume ideal hash function h : [n]! [0, 1]
y 1
While (stream is not empty) do

Let e be next item in stream

y min(y , h(e))
EndWhile

Output
1
y � 1

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 28

Analyzing idealized hash function

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E[Y] = 1

(k+1)
.

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E
⇥
Y

2
⇤
= 2

(k+1)(k+2)
and Var(Y) = k

(k+1)2(k+2)


1
(k+1)2

.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 28

Analyzing idealized hash function

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E[Y] = 1

(k+1)
.

Lemma
Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E
⇥
Y

2
⇤
= 2

(k+1)(k+2)
and Var(Y) = k

(k+1)2(k+2)


1
(k+1)2

.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 28

O
ElyD= fo 't ? (Y) G -H

"- '
de

un

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to
good bounds:

average h parallel and independent estimates to reduce variance

apply Chebyshev to show that the average estimator is a
(1 + ✏)-approximation with constant probability

use preceding and median trick with O(log 1/�) parallel copies
to obtain a (1 + ✏)-approximation with probability (1� �)

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 28

Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z � 1

Claim: E[Z] = 1
(k+1)

and Var(Z)  1
h

1
(k+1)2

.

Choosing h = 1/(⌘✏2) and using Chebyshev:

Pr
h
|Z �

1
k+1

| �
✏

k+1

i
 ⌘.

Hence Pr
⇥
|(1

Z � 1)� k|
⇤
� O(✏)k  ⌘.

Repeat O(log 1/�) times and output median. Error probability < �.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z � 1

Claim: E[Z] = 1
(k+1)

and Var(Z)  1
h

1
(k+1)2

.

Choosing h = 1/(⌘✏2) and using Chebyshev:

Pr
h
|Z �

1
k+1

| �
✏

k+1

i
 ⌘.

Hence Pr
⇥
|(1

Z � 1)� k|
⇤
� O(✏)k  ⌘.

Repeat O(log 1/�) times and output median. Error probability < �.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z � 1

Claim: E[Z] = 1
(k+1)

and Var(Z)  1
h

1
(k+1)2

.

Choosing h = 1/(⌘✏2) and using Chebyshev:

Pr
h
|Z �

1
k+1

| �
✏

k+1

i
 ⌘.

Hence Pr
⇥
|(1

Z � 1)� k|
⇤
� O(✏)k  ⌘.

Repeat O(log 1/�) times and output median. Error probability < �.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

* at
Ti
i

¥n¥ a-①

Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z � 1

Claim: E[Z] = 1
(k+1)

and Var(Z)  1
h

1
(k+1)2

.

Choosing h = 1/(⌘✏2) and using Chebyshev:

Pr
h
|Z �

1
k+1

| �
✏

k+1

i
 ⌘.

Hence Pr
⇥
|(1

Z � 1)� k|
⇤
� O(✏)k  ⌘.

Repeat O(log 1/�) times and output median. Error probability < �.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

Averaging and reducing variance

1 Run basic estimator independently and in parallel h times to
obtain X1,X2, . . . ,Xh

2 Let Z = 1
hXi

3 Output 1
Z � 1

Claim: E[Z] = 1
(k+1)

and Var(Z)  1
h

1
(k+1)2

.

Choosing h = 1/(⌘✏2) and using Chebyshev:

Pr
h
|Z �

1
k+1

| �
✏

k+1

i
 ⌘.

Hence Pr
⇥
|(1

Z � 1)� k|
⇤
� O(✏)k  ⌘.

Repeat O(log 1/�) times and output median. Error probability < �.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

I:EIE±
=

Algorithm via regular hashing

Do not have idealized hash function.

Use h : [n]! [N] for appropriate choice of N

Use pairwise independent hash family H so that random h 2 H

can be stored in small space and computation can be done in
small memory and fast

Several variants of idea with di↵erent trade o↵s between

memory

time to process each new element of the stream

approximation quality and probability of success

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 28

