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Pseudorandomness

Randomized algorithms rely on independent random bits

Psuedorandomness: when can we avoid or limit number of random
bits?

Motivated by fundamental theoretical questions and applications

Applications: hashing, cryptography, streaming, simulations,
derandomization, . . .

A large topic in TCS with many connections to mathematics.

This course: need t-wise independent variables and hashing
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Part I

Pairwise and t-wise independent
random variables
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Pairwise independent random variables

Definition
Discrete random variables X1,X2, . . . ,Xn from a range B are
independent if for all b1, b2, . . . , bn 2 B

Pr[X1 = b1,X2 = b2, . . . ,Xn = bn] =
nY

i=1

Pr[Xi = bi ] .

Uniformly distributed if Pr[Xi = b] = 1/|B| for all i , b 2 B.

Definition
Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1  i < j  n and for all b, b0

2 B,

Pr[Xi = b,Xj = b
0] = Pr[Xi = b] · Pr[Xj = b

0] .
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Pairwise independent random variables

Definition
Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1  i < j  n and for all b, b0

2 B,

Pr[Xi = b,Xj = b
0] = Pr[Xi = b] · Pr[Xj = b

0] .

If X1,X2, . . . ,Xn are independent than they are pairwise
independent but converse is not necessarily true

Example: X1,X2 are independent bits (variables from {0, 1}) and
X3 = X1 � X2. X1,X2,X3 are pairwise independent but not
independent.
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t-wise independence

Generalizing pairwise independence:

Definition
Random variables X1,X2, . . . ,Xn from a range B are t-wise
independent for integer t > 1 Xi1,Xi2, . . . ,Xit are independent for
any i1 6= i2 6= . . . 6= it 2 {1, 2, . . . , n}.

As t increases the variables become more and more independent. If
t = n the variables are independent.
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Motivation for pairwise/t-wise
independence from streaming

Want n uniformly distr random variables X1,X2, . . . ,Xn, say bits
But cannot store n bits because n is too large.

Achievable:

storage of O(log n) random bits

given i where 1  i  n can generate Xi in O(log n) time

X1,X2, . . . ,Xn are pairwise independent and uniform

Hence, with small storage, can generate n random variables “on
the fly”. In several applications, pairwise independence (or
generalizations) su�ce
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Generating pairwise independent bits

Assume for simplicity n = 2k
� 1 (otherwise consider nearest power

of 2). Hence k = O(log n)

Let Y1,Y2, . . . ,Yk be independent bits

For any S ⇢ {1, 2, . . . , k}, S 6= ;, define XS = �i2SYi

2k
� 1 random variables XS

Claim: If S 6= T then XS and XT are independent

Proof.

XS and XT are both uniformaly distributed over {0, 1}. Suppose
S � T 6= ;. Even knowing all outcomes of variables in T the
variables in S � T are independent and hence
Pr[XS = 0 | T ] = 1/2 and hence XS is independent of XT . If
S ⇢ T then apply same argument to T � S .
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Pairwise independent variables with larger
range

Suppose we want n pairwise independent random variables in range
{0, 1, 2, . . . ,m � 1} where m = 2k

� 1 for some k

Now each Xi needs to be a logm bit string

Use preceding construction for each bit independently

Requires O(logm log n) bits total

Can in fact do O(log n + logm) bits
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Using prime numbers and fields

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in
Zp = {0, 1, 2, . . . , p � 1}

Choose a, b 2 {0, 1, 2, . . . , p � 1} uniformly and
independently at random. Requires 2dlog pe random bits

For 0  i  p � 1 set Xi = ai + b mod p

Note that one needs to store only a, b, p and can generate Xi
e�ciently on the fly from i

Exercise: Prove that each Xi is uniformly distributed in Zp.
Claim: For i 6= j , Xi and Xj are independent.
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Using prime numbers and fields

Claim: For i 6= j , Xi and Xj are independent.

Some math required:

Zp is a field for any prime p. That is {0, 1, 2, . . . , p � 1}
forms a commutative group under addition mod p (easy). And
more importantly {1, 2, . . . , p � 1} forms a commutative
group under multiplication.
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Some math required...

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p � 1}.
=) There exists a unique y s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.
=) Zp = {0, 1, . . . , p � 1} when working modulo p is a field.
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Proof of LemmaUnique

Claim

Let p be a prime number. For any x, y , z 2 {1, . . . , p � 1} s.t.
y 6= z , we have that xy mod p 6= xz mod p.

Proof.
Assume for the sake of contradiction xy mod p = xz mod p.

x(y � z) = 0 mod p

=) p divides x(y � z)

=) p divides y � z

=) y � z = 0

=) y = z.

And that is a contradiction.
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Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x : an integer number in {1, . . . , p � 1}.
=) There exists a unique y s.t. xy = 1 mod p.

Proof.
By the above claim if xy = 1 mod p and xz = 1 mod p then
y = z . Hence uniqueness follows.

Existence. For any x 2 {1, . . . , p � 1} we have that
{x ⇤ 1 mod p, x ⇤ 2 mod p, . . . , x ⇤ (p � 1) mod p} =
{1, 2, . . . , p � 1}.
=) There exists a number y 2 {1, . . . , p � 1} such that
xy = 1 mod p.
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Proof of pairwise independence

Lemma

If i 6= j then for each
(r , s) 2 Zp⇥Zp there is exactly one pair (a, b) 2 Zp⇥Zp such that

ai + b mod p = r and aj + b mod p = s .

Proof.
Solve the two equations:

ai + b = r mod p and aj + b = s mod p

We get a = r�s
i�j mod p and b = r � ax mod p.

One-to-one correspondence between (a, b) and (r , s)

) if (a, b) is uniformly at random from Zp ⇥ Zp then (r , s) is
uniformly at random from Zp ⇥ Zp. Xi ,Xj independent.
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Pairwise independence for n,m powers of 2

We saw how to create n pairwise independent random variables when
n = m = p where p is a prime number. We want n,m arbitrary.
Easy to assume n is power of 2 (discard the unnecessary rvs) but
harder if m is not power of 2. Here we only consider powers of 2.

n > m is the more di�cult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem

Every finite field F has order p
k for some prime p and some integer

k � 1. For every prime p and integer k � 1 there is a finite field F
of order p

k and is unique up to isomorphism.

We will assume n and m are powers of 2. From above can assume
we have a field F of size n = 2k .
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Pairwise independence for n,m powers of 2

We have a field F of size n = 2k .

Generate n pairwise independent random variables from [n] to [n] by
picking random a, b 2 F and setting Xi = ai + b (operations in F).
From previous proof (we only used that Zp is a field) Xi are pairwise
independent.

Now Xi 2 [n]. Truncate Xi to [m] by dropping the most significant
log n � logm bits. Resulting variables are still pairwise independent
(both n,m being powers of 2 useful here).

Need to only store a, b, n and can generate Xi = ai + b. Skipping
details on computational aspects of F which are closely tied to the
proof of the theorem on fields.
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t-wise independence

Generalizing pairwise independence:

Definition
Random variables X1,X2, . . . ,Xn from a range B are t-wise
independent for integer t > 1 Xi1,Xi2, . . . ,Xit are independent for
any i1 6= i2 6= . . . 6= it 2 {1, 2, . . . , n}.

As t increases the variables become more and more independent. If
t = n the variables are independent.

Fact: For any n,m one can create n random t-wise independent
random variables from the range [m] using O(t(log n + logm))
true random bits. Can store only bits and generate the variables on
the fly in O(tpolylog(m + n)) time.
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t-wise independence

Construction using polynomials

Let F be a field

Pick t random (with replacement) numbers from F:
a0, a1, . . . , at�1

For each i 2 [|F|] set Xi = a0 + a1i + a2i
2 + . . . + at�1i

t�1
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Pairwise Independence and Chebyshev’s
Inequality

Chebyshev’s Inequality

For a � 0, Pr[|X � E[X ] | � a]  Var(X )
a2 equivalently for any

t > 0, Pr[|X � E[X ] | � t�X ] 
1
t2 where �X =

p
Var(X ) is

the standard deviation of X .

Suppose X = X1 + X2 + . . . + Xn.
If X1,X2, . . . ,Xn are independent then Var(X ) =

P
i Var(Xi).

Recall application to random walk on line

Lemma

Suppose X =
P

i Xi and X1,X2, . . . ,Xn are pairwise independent,
then Var(X ) =

P
i Var(Xi).
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Part II

Hashing
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Balls and Bins and Load Balancing

Suppose we want to distribute jobs to machines in a simple way to
achieve load balancing.

Throwing each new job into a random machine is a simple,
distributed, oblivious strategy with many benefits

Balls and bins is simple mathematical model to analyze the core
principles
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Balls and Bins ! Hashing

Hashing:

Want a “function” h : U ! B.

Want h to behave like a “random function”. That is for any
distinct x1, x2, . . . , xn 2 U we have h(x1), h(x2), . . . , h(xn)
to be uniformly distributed over B and independent.

But want h to be e�ciently computable and stored in small
memory

Many applications: hash tables as dictionary data structure,
cryptography/security, pseudorandomness, . . .
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Dictionary Data Structure

1 U : universe of keys : numbers, strings, images, etc.
2 Data structure to store a subset S ✓ U

3 Operations:
1 Search/look up: given x 2 U is x 2 S?
2 Insert: given x 62 S add x to S .
3 Delete: given x 2 S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.
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Dictionary Data Structure

Standard dictionary data structures such binary search trees rely
on universe U being a total order and hence can be compared

Comparison based data structures take ⇥(log n) comparisons
when storing n items from U and typically require pointer based
data structure

All objects represented in computers are essentially strings so
technically one can use a comparison based data structure always

Disadvantages of comparison based data structures:
Comparisons are expensive for many objects
Dynamic memory allocation and pointers

Hashing based dictionaries:
O(1) expected time operations
Depending on implementation, can avoid pointers
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Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U ! {0, . . . ,m � 1}.
3 Item x 2 U hashes to slot h(x) in T .

Given S ✓ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x 2 S hashes to a distinct slot in T . Store x in

slot h(x)
2 Lookup: Given y 2 U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|. Several techniques to handle
them.
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Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y .

Chaining/Open hashing to handle collisions:
1 For each slot i store all items hashed to slot i in a linked list.

T [i ] points to the linked list
2 Lookup: to find if y 2 U is in T , check the linked list at

T [h(y)]. Time proportion to size of linked list.

y

s

f

Chain length determines time for operations. Ideally want O(1).
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Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N � m
2, then for any hash function h : U ! T there exists

i < m such that at least N/m � m elements of U get hashed to
slot i .

Any S containing all of these is a very very bad set for h!
Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions di�cult
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Hashing from a theoretical point of view

Consider a family H of hash functions with good properties and
choose h randomly from H

Guarantees: small # collisions in expectation for any given S .

H should allow e�cient sampling.

Each h 2 H should be e�cient to evaluate and require small
memory to store.

In other worse a hash function is a “pseudorandom” function
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Strongly Universal Hashing

Question: What are good properties of H in distributing data?

1 Uniform: Consider any element x 2 U . Then if h 2 H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i ] = 1/m for every 0  i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y 2 U . Then if h 2 H is picked randomly then h(x) and
h(y) should be independent random variables.

Note: Fix x 2 U . h(x) is a random variable with range
{0, 1, 2, . . . ,m � 1}. Strong universal hash family implies that the
variables h(x), x 2 S are uniform and pairwise independent random
variables.
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Universal Hashing

Question: What are good properties of H in distributing data?

(2)-Universal: Consider any two distinct elements x, y 2 U .
Then if h 2 H is picked randomly then the probability of a
collision between x and y should be at most 1/m. In other
words Pr[h(x) = h(y)]  1/m.

Note: we do not insist on uniformity.
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(Strongly) Universal Hashing

Definition

A family of hash functions H is (2-)strongly universal if for all
distinct x, y 2 U , h(x) and h(y) are independent for h chosen
uniformly at random from H, and for all x , h(x) is uniformly
distributed.

Definition

A family of hash functions H is (2-)universal if for all distinct
x, y 2 U , Prh⇠H[h(x) = h(y)]  1/m where m is the table size.

Generalizes to t-strongly universal and t-universal families. Need
property for any tuple of t items.
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Analyzing Universal Hashing

Question: Fixing set S , what is the expected time to look up x 2 S

when h is picked uniformly at random from H?

1 `(x) : the size of the list at T [h(x)]. We want E[`(x)]
2 For y 2 S let Dy = 1 if h(y) = h(x), else 0.

`(x) =
P

y2S Dy

E[`(x)] =
P

y2S E[Dy ] =
P

y2S Pr [h(x) = h(y)]
 1 +

P
y2S,y 6=x

1
m (H is a universal hash family)

 1 + (|S| � 1)/m  2 if |S|  m
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Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h

assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:
1 O(1) expected time also holds for insertion.
2 Analysis assumes static set S but holds as long as S is a set

formed with at most O(m) insertions and deletions.
3 Worst-case: look up time can be large! How large? In principle

⌦(n) time but if H has good properties then O(
p

n) or
O(log n/ log log n) with high probability.
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Universal Hash Family

Universal: H such that Pr[h(x) = h(y)] = 1/m.

All functions

H : Set of all possible functions h : U ! {0, . . . ,m � 1}.

Universal.

|H| = m
|U|

representing h requires |U| logm – Not O(1)!

We need compactly representable universal family.
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Compact Stongly Universal Hash Family

Similar to construction of N pairwise independent random variables
with range [m].

The function is given by the algorithm to construct Xi given i .

Can do with O(logN) bits of storage since N � m in hashing
application.
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A Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|. Assumption m  N .

1 Choose a prime number p � N . Zp = {0, 1, . . . , p � 1} is a
field.

2 For a, b 2 Zp, a 6= 0, define the hash function ha,b as
ha,b(x) = ((ax + b) mod p) mod m.

3 Let H = {ha,b | a, b 2 Zp, a 6= 0}. Note that
|H| = p(p � 1).

Theorem
H is a universal hash family.

Comments:
1 Hash family is of small size, easy to sample from.
2 Easy to store a hash function (a, b have to be stored) and

evaluate it.
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A Compact Universal Hash Family

g(x) = ax + b is uniformly distributed in {0, 1, . . . , p � 1}
but h(x) is not uniformly distributed unless m = p.

Pr[h(x) = i ]  2/m for any i .
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Bloom Filters

Hashing:
1 To insert x in dictionary store x in table in location h(x)
2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeo↵ space for false positives
1 Storing items in dictionary expensive in terms of memory,

especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

2 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

3 To lookup y if bit in location h(y) is 1 say yes, else no.
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Bloom Filters

Bloom Filter: tradeo↵ space for false positives
1 To insert x in dictionary set bit to 1 in location h(x) (initially

all bits are set to 0)
2 To lookup y if bit in location h(y) is 1 say yes, else no
3 No false negatives but false positives possible due to collisions

Reducing false positives:
1 Pick k hash functions h1, h2, . . . , hk independently
2 To insert x , for each i , set bit in location hi(x) in table i to 1
3 To lookup y compute hi(y) for 1  i  k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is ↵ < 1 then
with k independent hash function it is ↵k .
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Take away points

1 Hashing is a powerful and important technique for dictionaries.
Many practical applications.

2 Randomization fundamental to understanding hashing.
3 Good and e�cient hashing possible in theory and practice with

proper definitions (universal, perfect, etc).
4 Related ideas of creating a compact fingerprint/sketch for

objects is very powerful in theory and practice.
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Practical Issues

Hashing used typically for integers, vectors, strings etc.

Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)

Practical methods for various important cases such as vectors, strings
are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for some
pointers.

Details on Cuckoo hashing and its advantage over chaining
http://en.wikipedia.org/wiki/Cuckoo_hashing.

Recent important paper bridging theory and practice of hashing.
“The power of simple tabulation hashing” by Mikkel Thorup and
Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing

Cryptographic hash functions have a di↵erent motivation and
requirements. Consequently they explore di↵erent tradeo↵s and are
constructed in a di↵erent way. See http:
//en.wikipedia.org/wiki/Cryptographic_hash_function
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