
CS 498ABD: Algorithms for Big Data

Probabilistic Counting and
Morris Counter
Lecture 04
September 3, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 18

Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B � m) and hence cannot store all the input

Want to compute interesting functions over input

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 18

Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 18

Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)

Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 18

Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better?

Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 18

Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 18

Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 18

Probabilistic Counting Algorithm

ProbabilisticCounting:
X ← 0
While (a new event arrives)
Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)
X ← X + 1

endWhile
Output 2X − 1 as the estimate for the length of the stream.

Intuition: X keeps track of log n in a probabilistic sense. Hence
requires O(log log n) bits

Theorem

Let Y = 2X . Then E[Y]− 1 = n, the number of events seen.

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 18

Probabilistic Counting Algorithm

ProbabilisticCounting:
X ← 0
While (a new event arrives)
Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)
X ← X + 1

endWhile
Output 2X − 1 as the estimate for the length of the stream.

Intuition: X keeps track of log n in a probabilistic sense. Hence
requires O(log log n) bits

Theorem

Let Y = 2X . Then E[Y]− 1 = n, the number of events seen.

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 18

Probabilistic Counting Algorithm

ProbabilisticCounting:
X ← 0
While (a new event arrives)
Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)
X ← X + 1

endWhile
Output 2X − 1 as the estimate for the length of the stream.

Intuition: X keeps track of log n in a probabilistic sense. Hence
requires O(log log n) bits

Theorem

Let Y = 2X . Then E[Y]− 1 = n, the number of events seen.

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 18

log n vs log log n

Morris’s motivation:

Had 8 bit registers. Can count only up to 28 = 256 events using
deterministic counter. Had many counters for keeping track of
different events and using 16 bits (2 registers) was infeasible.

If only log log n bits then can count to 228
= 2256 events! In

practice overhead due to error control etc. Morris reports
counting up to 130,000 events using 8 bits while controlling
error.

See 2 page paper for more details.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Analysis of Expectation

Induction on n. For i ≥ 0, let Xi be the counter value after i events.
Let Yi = 2Xi . Both are random variables.

Base case: n = 0, 1 easy to check: Xi ,Yi − 1 deterministically
equal to 0, 1.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 18

Analysis of Expectation

Induction on n. For i ≥ 0, let Xi be the counter value after i events.
Let Yi = 2Xi . Both are random variables.

Base case: n = 0, 1 easy to check: Xi ,Yi − 1 deterministically
equal to 0, 1.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 18

Analysis of Expectation

E[Yn] = E
[
2Xn
]

=
∞∑
j=0

2j Pr[Xn = j]

=
∞∑
j=0

2j
(

Pr[Xn−1 = j] · (1−
1

2j
) + Pr[Xn−1 = j − 1] ·

1

2j−1

)

=
∞∑
j=0

2j Pr[Xn−1 = j]

+
∞∑
j=0

(2 Pr[Xn−1 = j − 1]− Pr[Xn−1 = j])

= E[Yn−1] + 1 (by applying induction)

= n + 1

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 18

Jensen’s Inequality

Definition

A real-valued function f : R→ R is convex if
f ((a + b)/2) ≤ (f (a) + f (b))/2 for all a, b. Equivalently,
f (λa + (1− λ)b) ≤ λf (a) + (1− λ)f (b) for all λ ∈ [0, 1].

Theorem (Jensen’s inequality)

Let Z be random variable with E[Z] <∞. If f is convex then
f (E[Z]) ≤ E[f (Z)].

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 18

Jensen’s Inequality

Definition

A real-valued function f : R→ R is convex if
f ((a + b)/2) ≤ (f (a) + f (b))/2 for all a, b. Equivalently,
f (λa + (1− λ)b) ≤ λf (a) + (1− λ)f (b) for all λ ∈ [0, 1].

Theorem (Jensen’s inequality)

Let Z be random variable with E[Z] <∞. If f is convex then
f (E[Z]) ≤ E[f (Z)].

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 18

Implication for counter size

We have Yn = 2Xn . The function f (z) = 2z is convex. Hence

2E[Xn] ≤ E[Yn] ≤ n + 1

which implies

E[Xn] ≤ log(n + 1)

Hence expected number of bits in counter is dlog log(n + 1))e.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 18

Variance calculation

Question: Is the random variable Yn well behaved even though
expectation is right? What is its variance? Is it concentrated around
expectation?

Lemma

E
[
Y 2

n

]
= 3

2
n2 + 3

2
n + 1 and hence Var [Yn] = n(n − 1)/2.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 18

Variance calculation

Question: Is the random variable Yn well behaved even though
expectation is right? What is its variance? Is it concentrated around
expectation?

Lemma

E
[
Y 2

n

]
= 3

2
n2 + 3

2
n + 1 and hence Var [Yn] = n(n − 1)/2.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 18

Variance analysis

Analyze E
[
Y 2

n

]
via induction.

Base cases: n = 0, 1 are easy to verify since Yn is deterministic.

E [Y 2
n] = E [22Xn] =

∑
j≥0

22j · Pr[Xn = j]

=
∑
j≥0

22j ·
(

Pr[Xn−1 = j](1−
1

2j
) + Pr[Xn−1 = j − 1]

1

2j−1

)
=

∑
j≥0

22j · Pr[Xn−1 = j]

+
∑
j≥0

(
−2j Pr[Xn−1 = j − 1] + 42j−1 Pr[Xn−1 = j − 1]

)
= E [Y 2

n−1] + 3E [Yn−1]

=
3

2
(n − 1)2 +

3

2
(n − 1) + 1 + 3n =

3

2
n2 +

3

2
n + 1.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 18

Error analysis via Chebyshev inequality

We have E[Yn] = n and Var(Yn) = n(n − 1)/2 implies
σYn =

√
n(n − 1)/2 ≤ n.

Applying Cheybyshev’s inequality:

Pr[|Yn − E[Yn] | ≥ tn] ≤ 1/(2t2).

Hence constant factor approximation with constant probability (for
instance set t = 1/2).

Question: Want estimate to be tighter. For any given ε > 0 want
estimate to have error at most εn with say constant probability or
with probability at least (1− δ) for a given δ > 0.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 18

Error analysis via Chebyshev inequality

We have E[Yn] = n and Var(Yn) = n(n − 1)/2 implies
σYn =

√
n(n − 1)/2 ≤ n.

Applying Cheybyshev’s inequality:

Pr[|Yn − E[Yn] | ≥ tn] ≤ 1/(2t2).

Hence constant factor approximation with constant probability (for
instance set t = 1/2).
Question: Want estimate to be tighter. For any given ε > 0 want
estimate to have error at most εn with say constant probability or
with probability at least (1− δ) for a given δ > 0.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 18

Part I

Improving Estimators

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 18

Probabilistic Estimation

Setting: want to compute some real-value function f of a given
input I

Probabilistic estimator: a randomized algorithm that given I
outputs a random answer X such that E[X] ' f (I). Estimator is
exact if E[X] = f (I) for all inputs I .

Additive approximation: |E[X]− f (I)| ≤ ε

Multiplicative approximation:
(1− ε)f (I) ≤ E[X] ≤ (1 + ε)f (I)

Question: Estimator only gives expectation. Bound on Var [X]
allows Chebyshev. Sometimes Chernoff applies. How do we improve
estimator?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 18

Probabilistic Estimation

Setting: want to compute some real-value function f of a given
input I

Probabilistic estimator: a randomized algorithm that given I
outputs a random answer X such that E[X] ' f (I). Estimator is
exact if E[X] = f (I) for all inputs I .

Additive approximation: |E[X]− f (I)| ≤ ε

Multiplicative approximation:
(1− ε)f (I) ≤ E[X] ≤ (1 + ε)f (I)

Question: Estimator only gives expectation. Bound on Var [X]
allows Chebyshev. Sometimes Chernoff applies. How do we improve
estimator?

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 18

Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y (1),Y (2), . . . ,Y (h) be estimators from the h parallel
copies

Output Z = 1
h

∑h
i=1 Y (i)

Claim: E[Zn] = n and Var(Zn) = 1
h (n(n − 1)/2).

Choose h = 2
ε2 . Then applying Cheybyshev’s inequality

Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

To run h copies need O(1
ε2 log log n) bits for the counters.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18

Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y (1),Y (2), . . . ,Y (h) be estimators from the h parallel
copies

Output Z = 1
h

∑h
i=1 Y (i)

Claim: E[Zn] = n and Var(Zn) = 1
h (n(n − 1)/2).

Choose h = 2
ε2 . Then applying Cheybyshev’s inequality

Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

To run h copies need O(1
ε2 log log n) bits for the counters.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18

Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y (1),Y (2), . . . ,Y (h) be estimators from the h parallel
copies

Output Z = 1
h

∑h
i=1 Y (i)

Claim: E[Zn] = n and Var(Zn) = 1
h (n(n − 1)/2).

Choose h = 2
ε2 . Then applying Cheybyshev’s inequality

Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

To run h copies need O(1
ε2 log log n) bits for the counters.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18

Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y (1),Y (2), . . . ,Y (h) be estimators from the h parallel
copies

Output Z = 1
h

∑h
i=1 Y (i)

Claim: E[Zn] = n and Var(Zn) = 1
h (n(n − 1)/2).

Choose h = 2
ε2 . Then applying Cheybyshev’s inequality

Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

To run h copies need O(1
ε2 log log n) bits for the counters.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18

Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why? Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18

Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why? Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18

Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why?

Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18

Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why? Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18

Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why? Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18

Error reduction via median trick

Let Z ′ be median of the ` = c log(1/δ) independent estimators.

Lemma

Pr[|Z ′ − n| ≥ εn] ≤ δ.

Let Ai be event that estimate Z (i) is bad: that is,
|Z (i) − n| > εn. Pr[Ai] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Chernoff bounds: probability of bad median is at most
2−c′` for some constant c ′.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Error reduction via median trick

Let Z ′ be median of the ` = c log(1/δ) independent estimators.

Lemma

Pr[|Z ′ − n| ≥ εn] ≤ δ.

Let Ai be event that estimate Z (i) is bad: that is,
|Z (i) − n| > εn. Pr[Ai] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Chernoff bounds: probability of bad median is at most
2−c′` for some constant c ′.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Error reduction via median trick

Let Z ′ be median of the ` = c log(1/δ) independent estimators.

Lemma

Pr[|Z ′ − n| ≥ εn] ≤ δ.

Let Ai be event that estimate Z (i) is bad: that is,
|Z (i) − n| > εn. Pr[Ai] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Chernoff bounds: probability of bad median is at most
2−c′` for some constant c ′.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Error reduction via median trick

Let Z ′ be median of the ` = c log(1/δ) independent estimators.

Lemma

Pr[|Z ′ − n| ≥ εn] ≤ δ.

Let Ai be event that estimate Z (i) is bad: that is,
|Z (i) − n| > εn. Pr[Ai] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Chernoff bounds: probability of bad median is at most
2−c′` for some constant c ′.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Summarizing

Using variance reduction and median trick: with
O(1

ε2 log(1/δ) log log n) bits one can maintain a (1− ε)-factor
estimate of the number of events with probability (1− δ). This is a
generic scheme that we will repeatedly use.

For counter one can do (much) better by changing algorithm and
better analysis. See homework and references in notes.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 18

	Improving Estimators

