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Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B � m) and hence cannot store all the input

Want to compute interesting functions over input
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Counting problem

Simplest streaming question: how many events in the stream?

Obvious: counter that increments on seeing each new item. Requires
dlog ne = Θ(log n) bits to be able to count up to n events.

(We will use n for length of stream for this lecture)
Question: can we do better? Not deterministically.

Yes, with randomization.
“Counting large numbers of events in small registers” by Rober
Morris (Bell Labs), Communications of the ACM (CACM), 1978
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Probabilistic Counting Algorithm

ProbabilisticCounting:
X ← 0
While (a new event arrives)
Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)
X ← X + 1

endWhile
Output 2X − 1 as the estimate for the length of the stream.

Intuition: X keeps track of log n in a probabilistic sense. Hence
requires O(log log n) bits

Theorem

Let Y = 2X . Then E[Y ]− 1 = n, the number of events seen.
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log n vs log log n

Morris’s motivation:

Had 8 bit registers. Can count only up to 28 = 256 events using
deterministic counter. Had many counters for keeping track of
different events and using 16 bits (2 registers) was infeasible.

If only log log n bits then can count to 228
= 2256 events! In

practice overhead due to error control etc. Morris reports
counting up to 130,000 events using 8 bits while controlling
error.

See 2 page paper for more details.
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Analysis of Expectation

Induction on n. For i ≥ 0, let Xi be the counter value after i events.
Let Yi = 2Xi . Both are random variables.

Base case: n = 0, 1 easy to check: Xi ,Yi − 1 deterministically
equal to 0, 1.
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Analysis of Expectation

E[Yn] = E
[
2Xn
]

=
∞∑
j=0

2j Pr[Xn = j ]

=
∞∑
j=0

2j
(

Pr[Xn−1 = j ] · (1−
1

2j
) + Pr[Xn−1 = j − 1] ·

1

2j−1

)

=
∞∑
j=0

2j Pr[Xn−1 = j ]

+
∞∑
j=0

(2 Pr[Xn−1 = j − 1]− Pr[Xn−1 = j ])

= E[Yn−1] + 1 (by applying induction)

= n + 1
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Jensen’s Inequality

Definition

A real-valued function f : R→ R is convex if
f ((a + b)/2) ≤ (f (a) + f (b))/2 for all a, b. Equivalently,
f (λa + (1− λ)b) ≤ λf (a) + (1− λ)f (b) for all λ ∈ [0, 1].

Theorem (Jensen’s inequality)

Let Z be random variable with E[Z ] <∞. If f is convex then
f (E[Z ]) ≤ E[f (Z)].
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Implication for counter size

We have Yn = 2Xn . The function f (z) = 2z is convex. Hence

2E[Xn] ≤ E[Yn] ≤ n + 1

which implies

E[Xn] ≤ log(n + 1)

Hence expected number of bits in counter is dlog log(n + 1))e.
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Variance calculation

Question: Is the random variable Yn well behaved even though
expectation is right? What is its variance? Is it concentrated around
expectation?

Lemma

E
[
Y 2

n

]
= 3

2
n2 + 3

2
n + 1 and hence Var [Yn] = n(n − 1)/2.
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Variance analysis

Analyze E
[
Y 2

n

]
via induction.

Base cases: n = 0, 1 are easy to verify since Yn is deterministic.

E [Y 2
n ] = E [22Xn ] =

∑
j≥0

22j · Pr[Xn = j ]

=
∑
j≥0

22j ·
(

Pr[Xn−1 = j ](1−
1

2j
) + Pr[Xn−1 = j − 1]

1

2j−1

)
=

∑
j≥0

22j · Pr[Xn−1 = j ]

+
∑
j≥0

(
−2j Pr[Xn−1 = j − 1] + 42j−1 Pr[Xn−1 = j − 1]

)
= E [Y 2

n−1] + 3E [Yn−1]

=
3

2
(n − 1)2 +

3

2
(n − 1) + 1 + 3n =

3

2
n2 +

3

2
n + 1.
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Error analysis via Chebyshev inequality

We have E[Yn] = n and Var(Yn) = n(n − 1)/2 implies
σYn =

√
n(n − 1)/2 ≤ n.

Applying Cheybyshev’s inequality:

Pr[|Yn − E[Yn] | ≥ tn] ≤ 1/(2t2).

Hence constant factor approximation with constant probability (for
instance set t = 1/2).

Question: Want estimate to be tighter. For any given ε > 0 want
estimate to have error at most εn with say constant probability or
with probability at least (1− δ) for a given δ > 0.
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Part I

Improving Estimators
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Probabilistic Estimation

Setting: want to compute some real-value function f of a given
input I

Probabilistic estimator: a randomized algorithm that given I
outputs a random answer X such that E[X ] ' f (I ). Estimator is
exact if E[X ] = f (I ) for all inputs I .

Additive approximation: |E[X ]− f (I )| ≤ ε

Multiplicative approximation:
(1− ε)f (I ) ≤ E[X ] ≤ (1 + ε)f (I )

Question: Estimator only gives expectation. Bound on Var [X ]
allows Chebyshev. Sometimes Chernoff applies. How do we improve
estimator?
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Variance reduction via averaging

Run h parallel copies of algorithm with independent randomness

Let Y (1),Y (2), . . . ,Y (h) be estimators from the h parallel
copies

Output Z = 1
h

∑h
i=1 Y (i)

Claim: E[Zn] = n and Var(Zn) = 1
h (n(n − 1)/2).

Choose h = 2
ε2 . Then applying Cheybyshev’s inequality

Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

To run h copies need O( 1
ε2 log log n) bits for the counters.
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Error reduction via median trick

We have:
Pr[|Zn − E[Zn] | ≥ εn] ≤ 1/4.

Want:
Pr[|Zn − E[Zn] | ≥ εn] ≤ δ

for some given parameter δ.

Can set h = 1
2ε2δ

and apply Chebyshev. Better dependence on δ?

Idea: Repeat independently c log(1/δ) times for some constant c .
We know that with probability (1− δ) one of the counters will be
εn close to n. Why? Which one should we pick?

Algorithm: Output median of Z (1),Z (2), . . . ,Z (`).
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Error reduction via median trick

Let Z ′ be median of the ` = c log(1/δ) independent estimators.

Lemma

Pr[|Z ′ − n| ≥ εn] ≤ δ.

Let Ai be event that estimate Z (i) is bad: that is,
|Z (i) − n| > εn. Pr[Ai ] < 1/4. Hence expected number of
bad estimates is `/4.

For median estimate to be bad, more than half of Ai ’s have to
be bad.

Using Chernoff bounds: probability of bad median is at most
2−c′` for some constant c ′.
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Summarizing

Using variance reduction and median trick: with
O( 1

ε2 log(1/δ) log log n) bits one can maintain a (1− ε)-factor
estimate of the number of events with probability (1− δ). This is a
generic scheme that we will repeatedly use.

For counter one can do (much) better by changing algorithm and
better analysis. See homework and references in notes.
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