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Motivation

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q]  2n ln n.

But we want to know more because expectation is only one
basic piece of information. For instance what is
Pr[Q � 10n ln n]? What is Var [Q]?

Of course we would like to know the full distribution of Q but it
is not feasible in many cases because Q is the outcome of a
non-trivial algorithm.

Even when we know the full distribution we don’t want complex
formulas but nice simple closed forms that help us understand
the behaviour of a random variable in intuitive ways.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] =

�n
k

�
1/2n.

E[X ] = n/2

Var [X ] = n/4

Despite knowing the exact distribution it is hard to grasp how X

behaves without some analysis of binomial coe�cients etc. Let’s
plot.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p.

�n
k

�
1/2n.
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Massive randomness.. Is not that random.

This is known as concentration of measure.
This is a related to the law of large numbers and Cherno↵ bounds
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Side note...
Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Part I

Inequalities
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Randomized QuickSort

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q]  2n ln n.

What is Pr[Q � 10n ln n]?

Question: Can we say anything interesting knowing just the
expectation?
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(⌦,Pr) and let µ = E[X ]. For any t > 0, Pr[X � tµ]  1/t.
Equivalently, for any a > 0, Pr[X � a]  µ

a .

Meaningful only when t > 1. Example: Pr[X � 3µ]  1/3.
Proof? Simple averaging argument.
Split range of X into two disjoint intervals I1 = [0, tµ) and
I2 = [tµ,1). This is because X is non-negative.

If Pr[X 2 I2] > 1/t then E[X ] > (1/t)(tµ) > µ a contradiction!
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Equivalently, for any a > 0, Pr[X � a]  µ

a .

Proof:

E[X ] =
P

!2⌦ X (!) Pr[!]
=

P
!, 0X (!)<a X (!) Pr[!] +

P
!, X (!)�a X (!) Pr[!]

�
P

!2⌦, X (!)�a X (!) Pr[!]
� a

P
!2⌦, X (!)�a Pr[!]

= a Pr[X � a]
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�
R1
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Randomized QuickSort

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q]  2n ln n.

Question: What is Pr[Q � 10n ln n]?

By Markov’s inequality at most 1/5.
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Chebyshev’s Inequality: Variance

Variance

Given a random variable X over probability space (⌦,Pr), variance
of X is the measure of how much does it deviate from its mean
value. Formally, Var(X ) = E

⇥
(X � E[X ])2

⇤
= E

⇥
X

2
⇤
� (E[X ])2

Derivation

Define Y = (X � E[X ])2 = X
2 � 2X E[X ] + E[X ]2.

Var(X ) = E[Y ]
= E

⇥
X

2
⇤
� 2 E[X ] E[X ] + E[X ]2

= E
⇥
X

2
⇤
� E[X ]2
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
8x, y 2 R, Pr[X = x ^ Y = y ] = Pr[X = x] Pr[Y = y ]

Lemma
If X and Y are independent random variables then

Var(X + Y ) = Var(X ) + Var(Y ).

Lemma

If X and Y are mutually independent, then E[XY ] = E[X ] E[Y ].
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Chebyshev’s Inequality

Chebyshev’s Inequality

If VarX < 1, for any a � 0, Pr[|X � E[X ] | � a]  Var(X )
a2

Proof.

Y = (X � E[X ])2 is a non-negative random variable. Apply
Markov’s Inequality to Y for a

2.

Pr
⇥
Y � a

2
⇤
 E[Y ]/a2 , Pr

⇥
(X � E[X ])2 � a

2
⇤
 Var(X )/a2

, Pr[|X � E[X ] | � a]  Var(X )/a2

Pr[X  E[X ] � a]  Var(X )/a2 AND
Pr[X � E[X ] + a]  Var(X )/a2
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Chebyshev’s Inequality

Chebyshev’s Inequality

Given a � 0, Pr[|X � E[X ] | � a]  Var(X )
a2 equivalently for any

t > 0, Pr[|X � E[X ] | � t�X ]  1
t2 where �X =

p
Var(X ) is

the standard deviation of X .

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 44

Pelt x- till at r* ) e ¥2
=



Example: Random walk on the line

Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

After n steps how far from the origin?

At time i let Xi be �1 if move to left and 1 if move to right.
Yn position at time n

Yn =
Pn

i=1 Xi

E[Yn] = 0 and Var(Yn) =
Pn

i=1 Var(Xi) = n

By Chebyshev: Pr
⇥
|Yn| � t

p
n
⇤
 1/t2
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Cherno↵ Bound: Motivation

In many applications we are interested in X which is sum of
independent and bounded random variables.

X =
Pk

i=1 Xi where Xi 2 [0, 1] or [�1, 1] (normalizing)

Chebyshev not strong enough. For random walk on line one can prove

Pr
⇥
|Yn| � t

p
n
⇤
 2exp(�t

2/2)
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Cherno↵ Bound: Non-negative case

Lemma

Let X1, . . . ,Xk be k independent binary random variables such that,

for each i 2 [k], E[Xi ] = Pr[Xi = 1] = pi . Let X =
Pk

i=1 Xi .

Then E[X ] =
P

i pi .

Upper tail bound: For any µ � E[X ] and any � > 0,

Pr[X � (1 + �)µ]  (
e
�

(1 + �)(1+�)
)µ

Lower tail bound: For any 0 < µ < E[X ] and any 0 < � < 1,

Pr[X  (1 � �)µ]  (
e
��

(1 � �)(1��)
)µ
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Cherno↵ Bound: Non-negative case,
simplifying

When 0 < � < 1 an important regime of interest we can simplify.

Lemma

Let X1, . . . ,Xk be k independent random variables such that, for

each i 2 [1, k], Xi equals 1 with probability pi , and 0 with

probability (1 � pi). Let X =
Pk

i=1 Xi and µ = E[X ] =
P

i pi .

For any 0 < � < 1, it holds that:

Pr[X � (1 + �)µ]  e
��2µ

3

Pr[X  (1 � �)µ]  e
��2µ

2

Hence by union bound: Pr[|X � µ| � �µ]  2e
��2µ

3
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Cherno↵ Bound: Non-negative case

Important: non-negative case bound depends only on µ, not on k .

Regimes of interest for � for upper tail.

0  � < 1: Pr[X � (1 + �)µ]  e
� �2

3 ·µ

� � 1: Pr[X � (1 + �)µ]  e
� �

3 ·µ

(useful when � is close to a small constant)

� � 1: Pr[X � (1 + �)µ]  e
� (1+�) ln(1+�)

4 ·µ.
(useful when � is large)
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Cherno↵ Bound: general

Lemma

Let X1, . . . ,Xk be k independent random variables such that, for

each i 2 [1, k], Xi 2 [�1, 1].

Let X =
Pk

i=1 Xi . For any a > 0,

Pr[|X � E[X ] | � a]  2exp(
�a

2

2n
).

When variables are not positive the bound depends on n while in the
non-negative case there is no dependence on n (dimension-free)
Applying to random walk:

Pr
⇥
|Yn| � t

p
n
⇤
 2exp(�t

2/2).
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Extensions and variations

Hoe↵ding extension: Theorems hold as long as Xi is bounded —
variables do not have to be {0, 1}.

For non-negative Xi 2 [0, 1]

For general Xi 2 [�1, 1]

Averaging version: Bound X = 1
k (
Pk

i=1 Xi) instead of the sum.
Use variable Y = kX and bound on Y .

Scaling variables: If Xi is in [0,B] use Yi = Xi/B.

Shifting variables: If Xi 2 [ai , bi ] where bi � ai is small consider
Yi = Xi � ai .

Many variations and generalization. See pointers on course webpage.
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Part II

Balls and Bins
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Balls and Bins

m balls and n bins

Each ball thrown independently and uniformly in a bin

Want to understand properties of bin loads

Fundamental problem with many applications

Zij indicator for ball i falling into bin j

Xj =
Pm

i=1 Zij is number of balls in bin j
Pn

j=1 Zij = 1 deterministically

E[Zij ] = 1/n for all i , j , and hence E[Xj ] = m/n for each bin
j
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Theorem
Let Y = maxn

j=1 Xj be the maximum load. Then

Pr[Y > 10 ln n/ ln ln n] < 1/n2
(high probability) and hence

E[Y ] = O(ln n/ ln ln n).

One can also show that E[Y ] = ⇥(ln n/ ln ln n).
Proof technique: combine Cherno↵ bound and union bound which is
powerful and general template

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 44
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X =

P
i Zi where X is load of bin 1 and Zi is

indicator of ball i falling in bin.

Want to know Pr[X � 12 ln n/ ln ln n]

µ = E[X ] = 1

(1 + �) = 12 ln n/ ln ln n. We are in large � setting

Apply the Cherno↵ upper tail bound (with simplification) :

Pr[X � (1 + �)µ]  e
� (1+�) ln(1+�)

4 ·µ

Calculate/simplify and see that
Pr[X � 12 ln n/ ln ln n]  1/n3
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Maximum load

For each bin j , Pr[Xj � 12 ln n/ ln ln n]  1/n3

Let Aj be event that Xj � 12 ln n/ ln ln n

By union bound

Pr[[jAj ] 
X

j

Pr[Aj ]  n · 1/n3  1/n2.

Hence, with probability at least (1 � 1/n2) no bin has load
more than 12 ln n/ ln ln n.

Let Y = maxj Xj . Y  n. Hence

E[Y ]  (1 � 1/n2)(12 ln n/ ln ln n) + (1/n2)n.
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From a ball’s perspective

Consider a ball i . How many other balls fall into the same bin as i?

Ball i is thrown first wlog. And lands in some bin j .

Then the other n � 1 balls are thrown.

Now bin j is fixed. Hence expected load on bin j is (1 � 1/n).

What is variance? What is a high probability bound?
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Part III

Approximate Median
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Approximate median

Input: n distinct numbers a1, a2, . . . , an and 0 < ✏ < 1/2

Output: A number x from input such that
(1 � ✏)n/2  rank(x)  (1 + ✏)n/2

Algorithm:

Sample with replacement k numbers from a1, a2, . . . , an

Output median of the sampled numbers

Theorem

For any 0 < ✏ < 1/2 and 0 < � < 1, if k = ⌦( 1
✏2
log(1/�)), the

algorithm outputs an ✏-approximate median with probability at least

(1 � �).
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Approximate median

Let S be random sample chosen by algorithm

Imagine sorting the numbers

Split numbers into L (left), M (middle), and R (right)

M = {y | (1 � ✏)n/2  rank(y)  (1 + ✏)n/2}
Algorithm makes a mistake only if |S \ L| � k/2 or
|S \ R| � k/2. Otherwise it will output a number from M .

Lemma

Pr[|S \ L| � k/2]  �/2 if k � 10
✏2
log(1/�).
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Analysis

Let Y = |S \ L|? What is E[Y ]?

Y =
Pk

i=1 Xi where Xi is indicator of sample i falling in L.
Hence E[Y ] = k(1 � ✏)/2

Use Cherno↵ bound: Pr[Y � k/2]  �/2 if
k � 10

✏2
log(1/�).
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Analysis continued

Pr[|S \ L| � k/2]  �/2 if k � 10
✏2
log(1/�).

By symmetry: Pr[|S \ R| � k/2]  �/2 if k � 10
✏2
log(1/�).

By union bound at most � probability that |S \ L| � k/2 or
|S \ R| � k/2.

Hence with (1� �) probability median of S is an ✏-approximate
median
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Part IV

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Output: Numbers in sorted order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.
3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take ⌦(n2) time with some
small probability.
Question: With what probability it takes O(n log n) time?
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A)  32n ln n] � 1 � 1/n3.

If n = 100 then this gives Pr[Q(A)  32n ln n] � 0.99999.
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A)  32n ln n] � 1 � 1/n3.

Outline of the proof

If depth of recursion is k then Q(A)  kn.

Prove that depth of recursion  32 ln n with high probability.
Which will imply the result.

1 Focus on a fixed element. Prove that it “participates” in
> 32 ln n levels with probability at most 1/n4.

2 By union bound, any of the n elements participates in
> 32 ln n levels with probability at most 1/n3.

3 Therefore, all elements participate in  32 ln n w.p. (1� 1/n3).
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Useful lemma

Lemma

Consider h = 32 ln n for n su�ciently large integer. Consider h

independent unbiased coin tosses X1,X2, . . . ,Xh and let A be the

event that there are less than 4 ln n heads. Then Pr[A]  1/n4
.

Apply Cherno↵ bound (lower tail).

Xi = 1 if i is head, 0 otherwise. Let Y =
Ph

i=1 Xi is number
of heads.

µ = E[Y ] = h/2 = 16 ln n.

Pr[A] = Pr[Y < 4 ln n] = Pr[Y < µ/4].

By Cherno↵ bound: Pr[Y  (1 � �)µ]  exp(��2µ/2).
Using � = 3/4 we have Pr[A]  exp(�4.5 ln n)  1/n4.5.
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Randomized QuickSort: High Probability
Analysis

Fix an element s 2 A. We will track it at each level.
Let Si be the partition containing s at i

th level.
S1 = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S` = {s} for all k  `  n for
technical convenience

We call s lucky in i
th iteration, if balanced split:

|Si+1|  (3/4)|Si | and |Si \ Si+1|  (3/4)|Si |.
If ⇢ =#lucky rounds in first h rounds, then
|Sh|  (3/4)⇢n.
If h � ⇢ = 4 ln n then Sh  1 implies s done.

Lemma

Fix h = 32 ln n. |Sh| > 1 only if less then 4 ln n lucky rounds for s

in the first h rounds.
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How may rounds before 4 ln n lucky rounds?

Fix element s and h = 32 ln n.

Xi = 1 if s is lucky in iteration i

Observation: X1, . . . ,Xh are independent variables.

Pr[Xi = 1] = 1
2

Why?

Thus s not done after h iterations only if less than 4 ln n lucky
rounds in h rounds. Use Lemma to see probability less than
1/n4.
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Randomized QuickSort w.h.p. Analysis

n input elements. Probability that depth of recursion in
QuickSort > 32 ln n is at most 1

n4 ⇤ n = 1
n3 .

Theorem

With high probability (i.e., 1 � 1
n3 ) the depth of the recursion of

QuickSort is  32 ln n. Due to n comparisons in each level, with

high probability, the running time of QuickSort is O(n ln n).
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