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Motivation

Random variable Q@ = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q] < 2ninn.

But we want to know more because expectation is only one
basic piece of information. For instance what is

Pr[Q > 10nIn n]? What is Var[Q]?

Of course we would like to know the full distribution of @ but it
is not feasible in many cases because @ is the outcome of a
non-trivial algorithm.

Even when we know the full distribution we don’t want complex
formulas but nice simple closed forms that help us understand
the behaviour of a random variable in intuitive ways.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] = (})V/2".

E[X] = n/2

Var[X] = n/4
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] = (2)1/2".

E[X] = n/2

Var[X] = n/4

Despite knowing the exact distribution it is hard to grasp how X
behaves without some analysis of binomial coefficients etc. Let's

plot.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

0.4 ‘

0.35

0.3

0.25

0.2

probablity

0.15

0.1

0.05

n=4
Chandra (UIUC) CS498ABD 5

Fall 2020 5 /44



Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives-L, tail
gives zero. How many 1s? Binomial distribution: k w. -@
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on,

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on,

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on,

probablity
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Massive randomness.. Is not that random.

0.009 |
0.008
0.007
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probablity
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This is known as concentration of measure.
This is a related to the law of large numbers and Chernoff bounds
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Side note...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Part |

Inequalities
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Randomized QuickSort

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ We proved that E[Q] < 2nInn.
e What is Pr[Q > 10n1In n]?

Question: Can we say anything interesting knowing just the
expectation?
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Markov’s Inequality

Markov’s inequality

Let X be andom variable over a probability space
(22, Pr) and let p =E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(2,Pr) and let u = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < &

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3.

/\oo

Zxﬂﬂ
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(2,Pr) and let u = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3.
Proof?
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(2,Pr) and let u = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3.
Proof? Simple averaging argument.

Split range of X into two disjoint intervals /; = [0, tx) and
I, = [tp, 00). This is because X is non-negative.

If Pr[X € h] > 1/t then E[X] > (1/t)(tn) > p a contradiction!
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(2, Pr) and let u = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Proof:

E[X]

> wea X(w) Pr[w]
D, 0<x(w)<a X (W) Priw] + >°, x()>a X(w) Pr[w]
Zweﬂ, X(w)>a X(w) Pr[w]

a Zweﬂ, X(w)>a Pr[w]
aPr[X > a]

[ viIv I
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(€2,Pr) and let p = E[X]. Forany a > 0, Pr[X > a] < £.
Equivalently, for any t > 0, Pr[X > tu] < 1/t.

E[X] = [ zfx(z)dz
> [° zfx(z)dz
Z afaoo fx(Z)dZ
= aPr[X > a]
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Randomized QuickSort

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ We proved that E[Q] < 2nInn.
Question: What is Pr[Q > 10n1n n]?

By Markov's inequality at most 1/5.
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Chebyshev’s Inequality: Variance

Variance

Given a random variable X over probability space (2, Pr), variance
of X is the measure of how much does it deviate from its mean

value. Formally, Var().() = E[(X — E[F)g)z] E[X?] > (E[X])?

Derivation
Define Y = (X — E[X])? = X2 — 2X E[X] + E[X].

Var(X) = E[Y]
E[X?] — 2E[X]E[X] + E[X]®
= E[Xz} = E[X]2
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €ER, Pr[IX =xAY =y] =Pr[X = x] Pr[Y = y]

If X and Y are independent random variables then
Var(X 4+ Y) = Var(X) + Var(Y).
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €ER, Pr[IX =xAY =y] =Pr[X = x] Pr[Y = y]

If X and Y are independent random variables then
Var(X 4+ Y) = Var(X) + Var(Y).

If X and Y are mutually independent, then E[XY] = E[X] E[Y].
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Chebyshev’s Inequality

Chebyshev’s Inequality
If VaiX‘_7< oo, forany a > 0, Pr[| X — E[X]| > a] < Va;gx)

U ()7 EL Xl
Ve(x-10~ Vo
N warle B0 e

a a
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Chebyshev’s Inequality
Chebyshev’s Inequality

If VarX < oo, for any a > 0, Pr[|X — E[X]]| > a] < Va;gx)

Proof.

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a2

PrlY > a%] <HYY2 & Pr[(X — E[X])? > a%] < Var(X)/2
< Pr[|X —E[X]| 2 a] < Var(X)/2

O
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Chebyshev’s Inequality
Chebyshev’s Inequality

If VarX < oo, for any a > 0, Pr[|X — E[X]]| > a] < Va;gx)

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a2

PrlY > a%] <HYY2 & Pr[(X — E[X])? > a%] < Var(X)/2
< Pr[|X —E[X]| 2 a] < Var(X)/2

O

Pr[X < E[X] — a] < Var(X)/a? AND
Pr[X > E[X] + a] < Var(X)/a?
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Chebyshev’s Inequality

Chebyshev’s Inequality
Given a > 0, Pr[|X — E[X] | > a] < V%gx) equivalently for any

t > 0, Pr[|X — E[X]| > tox] < 3 where ox = \/Var(X) is
the standard deviation of X.

Wkt ) e &

e
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

@ After n steps how far from the origin?
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.
@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Yn = Z:"’:l Xi
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.
@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Yo=> 11X
E[Y.] =0and Var(Y,) =) ;, Var(X;) = n
_ =
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Yn = Z:"’:l Xi
E[Ya] = 0and Var(Y,) =>_[_, Var(Xi) = n ﬂ_\//vt; \(;

By Chebyshev: Pr[|Y,| > t/n] <1/t

P’*[l\[:;";[\,vzj}?/ &\E] < "E_Lq:
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Chernoff Bound: Motivation

In many applications we are interested in X which is sum of
independent and bounded random variables.

X = 32K | X; where X; € [0,1] or [—1,1] (normalizing)
Chebyshev not strong enough. For random walk on line one can prove

Pr(|Ya| > tv/n] < 2exp(—t*/2)

F= (00 ¢ L.
= (D
0
£l e >
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Chernoff Bound: Non-negative case

Let Xi,...,Xi be k independent binary random variables such that,
for each i 6 [k], E[Xi] = Pr[X; = 1] = p, Let X = Z, 1 Xi.
Then E[X] Z pi.
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Chernoff Bound: Non-negative case

Lemma

Let Xy, ..., Xk be k independent binary random variables such that,
for each i € [k], E[Xi] = Pr[X; = 1] = p;. Let X = 35| X;.
Then E[X] = ¥_; pi. ~=EHE

@ Upper tail bound: For any u > E[X] and any § > 0,

-_—

s .

PrIX > (1 + 8)u] < (@

@ Lower tail bound: For any 0 < p < E[X] and any 0 < § < 1,
wer tall oc ;

—

—0

Pr[X < (1-0)u] < (m)”
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Chernoff Bound: Non-negative case,
simplifying

When 0 < § < 1 an important regime of interest we can simplify.
_—

Lemma

Let Xi1,..., Xk be k independent random variables such that, for
each i € [1, k], X; equals 1 with probability p;, and 0 with
probability (1 — p;). Let X = Zf:l Xi and p = E[X] =D _; pi.
Forany 0 < 6 < 1, it holds that:

o PrX > (1+8)u] <€5°).

o Pr[X < (1—-4)u] S@.
. —82u
@ Hence by union bound: Pr[|X — u| > du] < 2e 3,
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Chernoff Bound: Non-negative case

Important: non-negative case bound depends only or‘@ not on@

Regimes of interest for § for upper tail. ﬂ FX>[[ +H )ﬁ]
—

° : PriIX > (14 96)p] < e Su_-

06>1 Pr[X > (1+06)u] <e 3+
(useful when § is close to a small constant)

@ d>1L Pr[X>(1+d6u]<e
(useful when & is large)

>\7/
J:!—/f‘r v EEEe—

0 | 2

/

1+4) In(1+6
_ 1+ )L(1+ )_”.

-—
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Chernoff Bound: general

Let Xi1,..., Xk be k independent random variables such that, for
eachi € [1,k], X; € [-1,1].
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Chernoff Bound: general

Let Xi1,..., X, be k independent ragdom variables such that, for
each i € [1,k], X; € [-1.1]. Let(X)= Zle Xi. Forany a > 0,

=

Pr[IX — E[X]| zéﬁ < 29’“"%34'

R
—_—  — =
e

: . e o
When variables are not positive the bound depends on sa-while in the
non-negative case there is no dependence on f1dimension-free)
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Chernoff Bound: general

Let Xi1,..., X be k independent random variables such that, for
eachi € [1,k], X; € [-1,1]. Let X = Zle Xi. Forany a > 0,

=
2

PrllX — E[X]| > a] < 2exp().

When variables are not positive the bound depends on n while in the
non-negative case there is no dependence on n (dimension-free)

Applying to random walk: \/Ms X Xy -~ X
-1

Pr|Y,] > tv/n] < 2exp(—t2/2). L7

—_— — —~— 2%
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Extensions and variations

Hoeffding extension: Theorems hold as long as X; is bounded —
variables do not have to be {0,1}.

@ For non-negative X; € [0, 1]
e For general X; € [—1,1]

Averaging version: Bound X = %(ZLI X;) instead of the sum.
Use variable Y = kX and bound on Y.

Scaling variables: If X; is in [0, B] use Y; = X;/B.

Shifting variables: If X; € [a;, b;] where b; — a; is small consider
\/,' = X,' — d;.

Many variations and generalization. See pointers on course webpage.
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Part 1l

Balls and Bins
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Balls and Bins

@ m balls and n bins
@ Each ball thrown independently and uniformly in a bin
@ Want to understand properties of bin loads

@ Fundamental problem with many applications
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Balls and Bins

m balls and n bins
Each ball thrown independently and uniformly in a bin
Want to understand properties of bin loads

Fundamental problem with many applications

Zj; indicator for ball i falling into bin j

X; =is number of balls in bin j

> j—1 Zij = 1 deterministically R ¢ LU

® E[Z;] = 1/n for all i,j, and hence E[Xj] = m/n for each bin

J A
LK) 2 EL2gTe M

-
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load? WM =n

L[XJ CfX] = szmjc
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Let Y = maxi_, X; be the maximum load. Then
Pr[Y > 10Inn/Inln n] < 1/n? (high probability) and hence

E[Y] = O(Inn/Inin n).

One can also show that E[Y] = O(In n/InIn n).
fg——

fn v
[y
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Let Y = maxi_, X; be the maximum load. Then
Pr[Y > 10Inn/Inln n] < 1/n? (high probability) and hence
E[Y] = O(Inn/InIn n).

One can also show that E[Y] = O(In n/InIn n).
Proof technique: combing Chernoff bound and union bound which is
powerful and general template
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Maximum load

Focus on bin 1 without Ios§ﬂof generality since bins are symmetric.
Simplifying notation X > Z where X is load of bin 1 and Z; is

indicator of ball i faIImg in bin.
ELxT =1
@ Want to know Pr[X > 12Inn/Inin n]

X 52 21,2y 0r B A0
& ediperodeds N
2= 1 wotn pak

[x3~ [
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X = ). Z; where X is load of bin 1 and Z; is

J %/ oy K

indicator of ball i falling in bin.

@ Want to know Pr[X > 12Inn/Inin n]
o 1= E[Xl =1.

@ (14+46)=12Inn/Inlnn. We are inetting

@ Apply the Chernoff upper tail bound (with simplification) :

_ o) n(+s)

PriI X > (146l <e
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X = ). Z; where X is load of bin 1 and Z; is
indicator of ball i falling in bin.

@ Want to know Pr[X > 12Inn/ Inin n|

o n=E[X]=1 -

@ (1+90)=12Inn/Inlnn. We are in large J setting

@ Apply the Chernoff upper tail bound (with simplification) :

_aa)n(+s)

PriI X > (146l <e "

o Calculate/simplify and see thz
Pr[X > 12Inn/Inin n] ‘@
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Maximum load

For each bin j, Pr[X; > 12Inn/Inlnn] < 1/n3
Let A; be event that X; > 12Inn/Ininn

—

By union bound

L
PUA] < ST PHAT <@ 1/ s@

—

@ Hence, with probability at least (1 — 1/n?) no bin has load
more than 12Inn/Inin n. —_—
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Maximum load

For each bin j, Pr[X; > 12Inn/Inlnn] < 1/n3
Let A;j be event that X; > 12Inn/Ininn

By union bound

PrlU;Al <) PrA]<n-1/n* <1/n’,

J

Hence, with probability at least (1 — 1/n?) no bin has load

more than 12Inn/Inin n.
Let Y = max; X;. Y < n. Hence

-—’//"'.-,_4—

E[Y] < (1 —1/n*)(12Inn/InInn) + (1/n*)n.
_— = = = 3

' lllmh([‘d(‘ﬁ. 1
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From a ball’s perspective

Consider a ball i. How many other balls fall into the same bin as i?

Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 44



From a ball’s perspective

Consider a ball i. How many other balls fall into the same bin as i?

@ Ball 7 is thrown first wlog. And lands in some bin j.

@ Then the other n — 1 balls are thrown.

@ Now bin j is fixed. Hence expected load on bin j is (1 — 1/n).
@ What is variance? What is a high probability bound?
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Part Il

Approximate Median
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Approximate median

@ Input: n distinct numbers a;, a3,...,a3,and 0 < e < 1/2

@ Output: A number x from input such that
(1 —€)n/2 < rank(x) < (1 + €)n/2
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Approximate median

@ Input: n distinct numbers a;, a3,...,a3,and 0 < e < 1/2

@ Qutput: A number x from input such that
(1 —€)n/2 < rank(x) < (1 + €)n/2
— P —

—

Algorith—n_w:’__

@ Sample with replacement k numbers from a;, az, ..., a,

@ Output median of the sampled numbers %
L
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Approximate median

@ Input: n distinct numbers a;, a3,...,a3,and 0 < e < 1/2

@ Output: A number x from input such that
(1 —€)n/2 < rank(x) < (1 + €)n/2
—f\

—
Algorithm: -

@ Sample with replacement k numbers from a;, az, ..., a,

@ Output median of the sampled numbers

Forany0 < e <1/2and 0 < § < 1, iflk = Q(% log(1/5))] the

algorithm outputs an e-approximate medianm with probability at least

1 — 9).
za-éL"—’ AL"KX'L (o0 1070
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Approximate median

o Le random sample chosen by algorithm
@ Imagine sorting the numbers
@ Split numbers into L (left), M (middle), and R (right)
o M={y|(1—¢€)n/2 < rank(y) < (1+ €)n/2}
@ Algorithm makes a mistake only if |[S N L| > k/2 or
|S N R| > k/2. Otherwise it will output a number from M.

——]
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:
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L M 7,
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kg ~
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Approximate median

@ Let S be random sample chosen by algorithm
@ Imagine sorting the numbers
@ Split numbers into L (left), M (middle), and R (right)
o M={y|(1—¢€)n/2 < rank(y) < (1+ €)n/2}
@ Algorithm makes a mistake only if |[S N L| > k/2 or
|S N R| > k/2. Otherwise it will output a number from M.

Prl[SNL| > k/2] < 6/2 if k > 1 log(1/9). v

—_—
—

p,\ CLQ(\J/L‘ 27 Lf—/? < %
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Analysis
(t-¢74 k<
o Let Y = SN L|? What is E[Y]? >

oY = Z, 1 Xi where X is indicator of sample J falling in L.
Hence E[Y] = k(1 — e)/2
@ Use Chernoff bound: Pr[Y > k/2] < §/2if

k > Ylog(1/9). = !
VL [ \(7/ ,—‘J: aﬂu&, E[\/j:ﬁ—%c
Y= 21(-)(" X ZO/']
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Analysis continued

e
o Pr[SNL|>k/2] <é&/2if k > 3 log(1/9).
@ By symmetry: Pr[|SNR| > k/2] < 6/2if k %%)Iog(lf/g).

@ By union bound at most § probability that |S N L
ISNR| > k/2.-

@ Hence with (1 — d) probability median of S is an e-approximate
median —
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Part |V

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take ©(n?) time with some
small probability.
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take ©(n?) time with some
small probability.

Question: With what probability it takes O(nlog n) time?
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — /a2
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — /a2

If n = 100 then this gives Pr[Q(A) < 32nIn n] > 0.99999. |

Chandra (UIUC) CS498ABD 38 Fall 2020 38 / 44



Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — 1/n3.

Outline of the proof

@ If depth of recursion is k then Q(A) < kn.

@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — 1/n3.

Outline of the proof
@ If depth of recursion is k then Q(A) < kn.
@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.
@ Focus on a fixed element. Prove that it “participates’ in
> 321In n levels with probability at most 1/n?.

@ By union bound, any of the n elements participates in
> 32In n levels with probability at most
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — 1/n3.

Outline of the proof
@ If depth of recursion is k then Q(A) < kn.
@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.
@ Focus on a fixed element. Prove that it “participates’ in
> 321In n levels with probability at most 1/n?.

@ By union bound, any of the n elements participates in
> 32In n levels with probability at most 1/n3.

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 44



Useful lemma

Consider h = 321In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X2, ..., X and let A be the
event that there are less than 4 In n heads. Then Pr[A] < 1/n*.
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Useful lemma

Consider h = 321In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X2, ..., X and let A be the
event that there are less than 4 In n heads. Then Pr[A] < 1/n*.

Apply Chernoff bound (lower tail).
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Useful lemma

Consider h = 321In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X2, ..., X and let A be the
event that there are less than 4 In n heads. Then Pr[A] < 1/n*.

Apply Chernoff bound (lower tail).

@ X; = 1if iis head, 0 otherwise. Let Y = Z?=1 X; is number
of heads.

e u=E[Y]=h/2=16Inn.

e Pr[A] = Pr[Y < 4Inn] = Pr[Y < n/4].

@ By Chernoff bound: Pr[Y < (1 — &)u] < exp(—d2u/2).
Using 8 = 3/4 we have Pr[A] < exp(—4.5Inn) < 1/n*°.
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Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

@ Let S; be the partition containing s at i" level.

@ S; = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience
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Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

@ Let S; be the partition containing s at i" level.

@ S; = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

@ We call s lucky in ith iteration, if balanced split:

|Siv1] < (3/4)|Si] and [S; \ Sit1| < (3/4)[Si].
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Randomized QuickSort: High Probability
Analysis

Fix an element s € A. We will track it at each level.

Let S; be the partition containing s at it level.

S1 = A and S¢ = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

We call s lucky in it" iteration, if balanced split:

|Siv1] < (3/4)|Si] and [S; \ Siva| < (3/4)[Si].

If p =#lucky rounds in first h rounds, then

1Sl < (3/8)"n.

Chandra (UIUC) CS498ABD 41 Fall 2020 41 / 44



Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

Let S; be the partition containing s at it level.

@ S; = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

@ We call s lucky in ith iteration, if balanced split:
|Siv1] < (3/4)|Si] and [S; \ Siva| < (3/4)[Si].

@ If p =#lucky rounds in first h rounds, then
1Shl < (3/4)°n.

o If h>p=4Innthen S, <1 implies s done.
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Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

@ Let S; be the partition containing s at i" level.

@ S; = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

@ We call s lucky in ith iteration, if balanced split:
|Si+1] < (3/4)[Si] and |S; \ Siya| < (3/4)|Si].

@ If p =#lucky rounds in first h rounds, then
1Shl < (3/4)°n.

o If h>p=4Innthen S, <1 implies s done.

Fix h = 321Inn. |Su| > 1 only if less then 4 In n lucky rounds for s
in the first h rounds.
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How may rounds before 4 In n lucky rounds?

@ Fix element s and h = 32Inn.
@ X; = 1if sis lucky in iteration i
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How may rounds before 4 In n lucky rounds?

@ Fix element s and h = 321Inn.

@ X; = 1if sis lucky in iteration i

@ Observation: Xi,..., X, are independent variables.
o Pr[X; =1] =3 Why?
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How may rounds before 4 In n lucky rounds?

Fix element s and h = 32In n.

X; = 1 if s is lucky in iteration i

Observation: Xi,..., X, are independent variables.

Pr[X; =1] =1 Why?

Thus s not done after h iterations only if less than 4 In n lucky

rounds in h rounds. Use Lemma to see probability less than
1/n*.
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that depth of recursion in
QuickSort > 321In n is at most % *n =2

F .
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that depth of recursion in

QuickSort > 321In n is at most % *n= %

With high probability (i.e., 1 — % ) the depth of the recursion of
QuickSort is < 321In n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(nlIn n).
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