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Part I

Introduction to Randomized
Algorithms
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Example: Randomized QuickSort

QuickSort ?
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.
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Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in
O(n log n) expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
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Example: Verifying Matrix Multiplication

Problem

Given three n × n matrices A,B,C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C .

2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).
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Example: Verifying Matrix Multiplication

Problem

Given three n × n matrices A,B,C is AB = C?

Randomized algorithm:
1 Pick a random n × 1 vector r .
2 Return the answer of the equality ABr = Cr .
3 Running time?

O(n2)!

Theorem

If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.
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Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized or
randomness is provably necessary.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!
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Average case analysis vs Randomized
algorithms

Average case analysis:
1 Fix a deterministic algorithm.
2 Assume inputs comes from a probability distribution.
3 Analyze the algorithm’s average performance over the

distribution over inputs.

Randomized algorithms:
1 Algorithm uses random bits in addition to input.
2 Analyze algorithms average performance over the given input

where the average is over the random bits that the algorithm
uses.

3 On each input behaviour of algorithm is random. Analyze
worst-case over all inputs of the (average) performance.
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Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random.
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x :|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x :|x|=n

E[R(x)] .
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Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

1 Let M(x) be the time for M to run on input x of length |x|.
For Monte Carlo, assumption is that run time is deterministic.

2 Let Pr[x] be the probability that M is correct on x .

3 Pr[x] is a random variable: depends on random bits used by M .

4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x :|x|=n

Pr[x] .
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Part II

Randomized Quick Sort

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 33



Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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Analysis

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define?
What are the events of the algorithm?
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Analysis via Recurrence

1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

2 Note that Q(A) is a random variable.
3 Let Ai

left and Ai
right be the left and right arrays obtained if rank i

element chosen as pivot.

Let Xi be indicator random variable, which is set to 1 if pivot is
of rank i in A, else zero.

Q(A) = n +
n∑

i=1

Xi ·
(
Q(Ai

left) + Q(Ai
right)

)
.

Since each element of A has probability exactly of 1/n of being
chosen:

E[Xi ] = Pr[pivot has rank i ] = 1/n.
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Independence of Random Variables

Lemma

Random variables Xi is independent of random variables Q(Ai
left) as

well as Q(Ai
right), i.e.

E
[
Xi · Q(Ai

left)
]

= E[Xi ] E
[
Q(Ai

left)
]

E
[
Xi · Q(Ai

right)
]

= E[Xi ] E
[
Q(Ai

right)
]

Proof.

This is because the algorithm, while recursing on Q(Ai
left) and

Q(Ai
right) uses new random coin tosses that are independent of the

coin tosses used to decide the first pivot. Only the latter decides
value of Xi .
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Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Xi

(
Q(Ai

left) + Q(Ai
right)

)
By linearity of expectation, and independence random variables:

E
[
Q(A)

]
= n +

n∑
i=1

E[Xi ]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .
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Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected
running time of randomized QuickSort on arrays of size n.

We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i − 1) + T (n − i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i)) .
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Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i − 1) + T (n − i))

with base case T (1) = 0.

Lemma

T (n) = O(n log n).

Proof.

(Guess and) Verify by induction.
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Part III

Slick analysis of QuickSort
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A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 33



A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

1 For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

2 Xij is the indicator random variable for Rij . That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E
[
Xij

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
.

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 33



A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

7 5 9 1 3 4 8 6
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A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].

Chandra (UIUC) CS498ABD 24 Fall 2020 24 / 33



A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij ]?

With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
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1 If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.

2 If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒ 7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6
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7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of com-
paring 5 to 8 is Pr[R4,7].

1 If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

2 If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

3 If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.
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A Slick Analysis of QuickSort
Question: What is Pr[Ri,j]?

Conclusion:

Ri ,j happens if and only if:
i th or j th ranked element is the first pivot out of

i th to j th ranked elements.
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Digression

Consider the following experiment:

Every day John decides whether to wear a tie by tossing a biased
coin that comes up heads with probability p > 0 (and tails
otherwise). He wears a tie if it comes up heads.

If the coin is heads he tosses an unbiased coin to decide whether
to wear a red tie or a blue tie.

Question: What is the probability that John wore a red tie on the
first day he wore a tie?
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A Slick Analysis of QuickSort

Question: What is Pr[Rij ]?

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.

Let a1, . . . , ai , . . . , aj , . . . , an be elements of A in sorted order.
Let S = {ai , ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...
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A Slick Analysis of QuickSort
Continued...

Lemma

Pr
[
Rij

]
= 2

j−i+1
.

Proof.

Let a1, . . . , ai , . . . , aj , . . . , an be sort of A. Let
S = {ai , ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j − i + 1) since the pivot is
chosen uniformly at random from the array.
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How much is this?

Hn =
∑n

i=1
1
i is the n’th harmonic number

(A) Hn = Θ(1).

(B) Hn = Θ(log log n).

(C) Hn = Θ(
√

log n).

(D) Hn = Θ(log n).

(E) Hn = Θ(log2 n).
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And how much is this?

Tn =
n−1∑
i=1

n−i∑
j=1

1

j
is equal to

(A) Tn = Θ(n).

(B) Tn = Θ(n log n).

(C) Tn = Θ(n log2 n).

(D) Tn = Θ(n2).

(E) Tn = Θ(n3).

Chandra (UIUC) CS498ABD 31 Fall 2020 31 / 33



A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij ] =
∑

1≤i<j≤n

Pr[Rij ] .

Lemma

Pr[Rij ] = 2
j−i+1

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

2

j − i + 1
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∆
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(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)
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Where do I get random bits?

Question: Are true random bits available in practice?

1 Buy them!

2 CPUs use physical phenomena to generate random bits.

3 Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

4 In practice pseudo-random generators work quite well in many
applications.

5 The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.
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