
Homework 4

Algorithms for Big Data: CS498 ABD/ABG, Fall 2020
Due: Monday at 10pm CDT, December 14, 2020

Instructions and Policy:

• Unlike previous homeworks, you need only do 2 problems. (Of course you’re encouraged to
try and welcome to submit all of them!)

• Each homework can be done in a group of size at most two. Only one homework needs to be
submitted per group. However, we recommend that each of you think about the problems on
your own first.

• Homework needs to be submitted in pdf format on Gradescope. See https://courses.engr.
illinois.edu/cs374/fa2018/hw-policies.html for more detailed instructions on Grade-
scope submissions.

• Follow academic integrity policies as laid out in student code. You can consult sources but
cite all of them including discussions with other classmates. Write in your own words. See
the site mentioned in the preceding item for more detailed policies.

Problem 1. Minhash and permutations We discussed minhash based on random permutations
for Jaccard similarity of sets. It is useful in a variety of settings but requires, in the traditional
analysis, that we use several permutations. Here is an alternative approach from a NeurIPS 2012
paper based on a single permutation and bucketing. https://papers.nips.cc/paper/2012/file/
eaa32c96f620053cf442ad32258076b9-Paper.pdf. Read the paper and summarize it.

Problem 2. LSH We saw LSH and the Indyk-Motwani approach. We covered it a high-level but
the practical aspects require some care and subtlety. Read the recent paper https://arxiv.org/
abs/2005.12065 and summarize your understanding.

Problem 3. Describe a semi-streaming algorithm in the strict turnstile model (edges can be
inserted and deleted) to check whether a graph is 2-edge connected.

Problem 4. Matchings with additional constraint We saw an algorithm in the semi-streaming
model for finding a constant factor approximation to the maximum cardinality and maximum weight
matching problem. Now consider the following variant. We are given a graph G = (V,E). Moreover
each edge has a color from {1, 2, ..., k} and each color i has an integer upper bound bi. The goal
is to find a maximum cardinality matching M which satisfies the additional constraint that the
number of edges in M from a color class i is at most bi. Assume that you are given the bi values
ahead of time and the each edge when it arrives in the stream specifies its end points and its color.
Describe a constant factor approximation for this problem in the semi-streaming setting.

Problem 5. Weighted matchings from unweighted In lecture we saw an algorithm for maxi-
mum weighted matching in the semi-streaming model. The unweighted case admits a simple greedy

1

https://courses.engr.illinois.edu/cs498abd/fa2020/
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html
https://papers.nips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://papers.nips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://arxiv.org/abs/2005.12065
https://arxiv.org/abs/2005.12065

algorithm (maximal matching is 1/2-approximation) while the weighted case is more involved. In
this problem you will see another approach which gives a simple reduction to the unweighted case;
the advantage is that it is a generic reduction that applies to other problems as well. Assume
all edge weights are between 1 and W for some known upper bound W . Partition edges in to
k = O(logW) groups Ei = {e | w(e) ∈ w(e) ≥ 2i−1}. The algorithm runs the unweighted algo-
rithm separately for each Ei (that is, it ignores the weights of edges in Ei). Let Mi be the matching
it computes for G = (V,Ei). At the end of the stream it outputs the matching with the maximum
weight among the k matchings so the space is O(n logW).

• Analyze the algorithm and show that it achieves a constant factor approximation for the
weighted matching problem. You can obtain a 1

4(1+ε) -approximation if you choose parameters
carefully.

• Show that this approach applies to handle the weighted case of matching with additional
constraint from Problem 1.

• Assuming minimum weight of an edge is 1, adapt the algorithm so that it uses O(npoly(log n))
space without knowledge of W .

Problem 6. Hypergraph matching A hypergraph G = (V,E) consists of set of vertices V and a
set hyperedges E. Each hyperedge e ∈ E is a subset of V , that is e ⊆ V . The rank of G is maxe |e|.
Graphs are a special case with r = 2. M ⊆ E is a matching in a hypergraph if no two hyperedges in
M intersect in a vertex. Unlike matchings in graphs finding the maximum cardinality matching in a
hypergraph is NP-Hard even when r = 3 (the standard NP-Complete problem related to this is the
3-D matching problem). Consider the semi-streaming version of finding an approximate matching
in a hypergraph where the edges arrive one by one.

• Obtain a semi-streaming algorithm for the maximum cardinality matching with approxima-
tion ratio 1/r where r is the rank.

• Obtain an Ω(1/r2)-approximation for the weighted case.

• Extra credit: Obtain an Ω(1/r)-approximation for the weighted case. You can skip the
previous two parts if you do this.

Problem 7. In a turnstile stream updating a vector x ∈ Rn starting as the 0 vector, an ε-error `1
sampler is a streaming algorithm that when queried outputs a pair (i, x̂i) such that i is output with
probability |xi|/‖x‖1 and x̂i = (1± ε)xi (recall that in turnstile streams, each stream update is of
the form xi ← xi + v where v can be positive or negative). Pretend we have such an `1 sampler
using space S(n, ε). Now consider the following problem: you see a stream i1 i2 · · · in+1 with each
ij ∈ [n]. This stream must have at least one duplicate entry due to the pigeonhole principle. Show
how to use a 1/2-error `1 sampler to give a one-pass streaming algorithm that reports at least one
duplicate index i ∈ [n] with probability at least 1 − δ. The space of your algorithm should be
O(S(n, 1/2) · log(1/δ)).

Problem 8. We have seen streaming algorithms for ε-approximate quantiles. We defined An ε-
approximate quantile for a quantile φ ∈ (0, 1] as an element of rank r where φn− εn ≤ r ≤ φn+ εn
where n is number of elements. We define a stronger notion of ε-approximate quantiles where we

2

wish to return an element of rank r where (1− ε)φn ≤ r ≤ (1 + ε)φn. Describe how to compute an
ε-approximate quantile summary for this stronger notion of approximation.

Problem 9. In lecture we saw the frequent directions algorithms for low rank approximation with
parameter k. The algorithm computes n SVDs of ` × d matrices where ` = k(1 + 1/ε) each of
which takes O(d`2) time for a total time of O(ndk2/ε2). We would like to improve the run time
to O(ndk/ε). Consider some constant c > 1 and now we will use matrix Q with c` rows but we
will batch every (c− 1)` rows of A and compute an SVD only once for each batch. Show that this

scheme gives (1 + ε)-approximation as before but the running time is now reduced to O(c2

c−1nd`).

3

