Homework 2

Algorithms for Big Data: CS498 ABD/ABG, Fall 2020
Due: Wednesday at 10pm CDT, 30th September 2020

Instructions and Policy:

e Each homework can be done in a group of size at most two. Only one homework needs to be
submitted per group. However, we recommend that each of you think about the problems on
your own first.

e Homework needs to be submitted in pdf format on Gradescope. See https://courses.engr.
illinois.edu/cs374/fa2018/hw-policies.html for more detailed instructions on Grade-
scope submissions.

e Follow academic integrity policies as laid out in student code. You can consult sources but
cite all of them including discussions with other classmates. Write in your own words. See
the site mentioned in the preceding item for more detailed policies.

Problem 1. Hashing and limited independence. Let h : [n] — [m] be a random hash function
chosen from a 3-wise independent family of hash functions. For a fixed item 4 let Y be the number
of items ¢ # 7 that collide with 7 under h.

o What is E[Y]?
e What is Var[Y] as a function of m,n?

e Using Chebyshev, what is P[Y > a] where a > 1 is some integer. Express this as a function
of a,m,n.

Problem 2. Hashing to the rescue. Suppose you want to estimate the number of distinct words
in a long text document in English. The document is available in a streaming fashion (with one
word at a time) but you have very limited memory and cannot store the entire document. You
have access to a black-box streaming algorithm for distinct elements but the algorithm requires
its input to be integers in [n] for some large n. The size of the English vocabulary is n’ where
n’ < n. However, the number of potential strings of 20 English characters (which is a reasonable
upper bound on the word length) is N >> n; thus we cannot use the black-box distinct elements
algorithm by mapping each potential 20 character word to a distinct integer. Assume that you
do not know how to solve distinct elements by yourself and hence need to use a reduction to the
existing algorithm. How would you use hashing to address this problem? Briefly justify why you
can obtain a good estimate with high probability.

Problem 3. Sampling distinct elements. We saw how to estimate the number of distinct
elements from a stream. Now we consider the problem of sampling nearly uniformly from the set of
distinct elements. If we had access to an ideal hash function A : [n] — [0, 1] then one can see that


https://courses.engr.illinois.edu/cs498abd/fa2020/
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html

the element which achieves the minimum hash value is uniformly distributed among the distinct
elements. However, we do not have access to an ideal hash function. There is a notion of minwise
independent hash functions which is directly relevant to this application; we will see their formal
definition later in the course. For now we will see how to modify the algorithm we saw in lecture
to obtain a near uniform sample from the distinct elements.

Consider the BJKST algorithm we saw in lecture that used a random hash function h : [n] — [n3]
from a pairwise independent hash family H. Now assume that we instead use a 3-wise independent
hash family. The algorithm stores ¢t = 1/¢> elements associated with the smallest ¢ hash values seen
and at the end of the algorithm outputs one of them uniformly at random. Our goal is to show
that each distinct element is output with probability at least (1 — 10¢)/d and at most (1 + €)/d
(i.e., nearly uniform). (You may assume that € is smaller than some constant like 1/2 to make the
calculations easier.)

To this end, let by, ba, ..., bg be the distinct values in the stream. Assume d > 1/¢> for otherwise
we can store all of them and output a uniformly sampled element. Observe that an element b; is
among the ¢ remaining elements if each of the following events all occur.

(a) h(b)) < [(1—e)tN/d].
(b) The number of other elements b; (j # 4) such that h(b;) < [(1 — €)tN/d] is at most ¢t — 1.

(c) h(bj) # h(b;) for all j # i.
Show that the above events all occur with probability close to ¢/d via the following steps.

1. Let Z be an indicator for h(b;) < [(1 —€)tN/d|. What is P[Z = 1]?

2. Conditioned on Z = 1, show that the probability that more than ¢ — 1 of the remaining items
(bj where j # i) has value < [(1 — €)tN/d] is at most (1 + €)e.

3. Show that the probability of a hash collision with b; is at most et/d. Hint: First show the
probability is at most O(1/n?).

4. Put the above together to show that b; is one of the ¢ selected elements with probability
> (1 — 10€)t/d, hence output with probability > 1=1%,

5. Extra credit: Show that the probability that b; is output is at most (1 + 10¢)/d if you use
a hash function with sufficiently large but constant independence.

Make note in particular of where you use the assumption that h is 3-wise independent.

Problem 4. Entropy estimation. In class, we saw how the AMS sampling procedure allows us
to estimate the kth moment F* in sublinear space for k > 2. Recall also that the AMS sampler
still requires polynomial space because the variance of a single sample was polynomial. Here we
will use AMS to estimate the entropy of a stream; in particular, we will show that we only need
logarithmic space (modulo dependencies on € and d) to estimate the entropy.

Let f € N} be frequency counts over n elements, and for each ¢, let p; = % be the corresponding

probability distribution. The entropy of p is the quantity ® = ). p;In }%, where Oln% = 0.

2



Our high-level goal is to obtain an (1 £ ¢€)-multiplicative approximation to the entropy, but there
is a technical issue because the entropy can be zero. We instead seek a (1 £ €)-multiplicative
approximation of 1 + @, which converts to a (1 & 2¢)-multiplicative approximation of ® if & > 1
and a 2e-additive approximation of ® if & < 1. You may assume m is larger than a fixed constant,
say 42.

Let g(¢) = % In 7€,

1. Show that 1+ ® =€} ;1 9(fi)-
2. Show that g(¢) > g(¢ — 1) for £ < m.
3. Show that for £ < m, g(¢) —g(£ —1) < 1‘:11%

4. Let Y be the AMS sample based estimator for the quantity 2(1+ ®) = >, g(f;). We know
from class that E[Y] = 1(1 4+ ®). Show that

VarlY] <ci(1+1Inm)(1+ ®) =eci(1 +1Inm)E[Y]
for some constant c¢; > 0.

5. Use averaging and median trick to obtain a (1 & €)-approximation of 1 + ® with probability
> 1—9. What is the total space usage?

Problem 5. Join size estimation. Recall that for two relations (i.e., tables in a database)
r(A, B) and s(4,C), with a common attribute (i.e., column) A, we define the join r < s to be a
relation consisting of all tuples (a, b, ¢) such that (a,b) € r and (a,c) € s. Therefore, if f,; and f; ;
denote the frequencies of j in the first columns (i.e., A-columns) of r and s, respectively, and j can
take values in [n], then the size of the join is Z}l:l fr.jfs;. As we noted in lecture if r = s then
Z?Zl frifsj = z;‘:l ff ; for which we can use F; estimation algorithm (this is the self join case).
Generalize this estimation algorithm when r and s are not necessarily the same relation. More
formally design a sketch from a scan of a relation in one streaming pass such that, based on the
sketches of two different relations, we can estimate the size of their join. Explain how to compute
the estimate. Show, via an example class of instances, that the variance of this estimator can be

very large compared to the actual value.



