
Homework 1

Algorithms for Big Data: CS498 ABD/ABG, Spring 2020
Due: Wednesday at 10pm, 16th September 2020

Instructions and Policy:

• Each homework can be done in a group of size at most two. Only one homework needs to be
submitted per group. However, we recommend that each of you think about the problems on
your own first.

• Homework needs to be submitted in pdf format on Gradescope. See https://courses.engr.
illinois.edu/cs374/fa2018/hw-policies.html for more detailed instructions on Grade-
scope submissions.

• Follow academic integrity policies as laid out in student code. You can consult sources but
cite all of them including discussions with other classmates. Write in your own words. See
the site mentioned in the preceding item for more detailed policies.

Problem 1. Reservoir sampling.

• Suppose we used reservoir sampling on a stream σ1 of length m1 and stored a k-sample (with
replacement) S1. We also used reservoir sampling on another stream σ2 of length m2 and
stored a k-sample S2. Show how you can obtain a k-sample (with replacement) S for the
stream σ = σ1 ·σ2 (the concatenated stream) from S1 and S2 and knowing the values m1,m2.
How would you generalize if you had h streams σ1, σ2, . . . , σh of lengths m1,m2, . . . ,mh and
associated k-samples S1, S2, . . . , Sh?

• Now suppose you want to do weighted sampling without replacement in the same setting as
above. Recall from lecture notes the scheme where the algorithm picked a random θ value
for each item and stored the k items with the largest values of θ1/w seen in the stream. Show
how this scheme can be used to obtain a sample from S1 and S2. You need to point out what
needs to be stored along with the sample.

The idea of this problem is to review reservoir sampling and point out the notion of a small “sketch”
of a stream that can be stored and combined with sketches of other streams to create a “sketch”
of the concatenated stream.

Problem 2. Sampling, Chebyshev vs Chernoff. Suppose you want to estimate the average of
n numbers via sampling, for example the average wealth of people in a town. The average can be
very skewed by outliers — perhaps there are a few billionaires that will not make it to the sample
but will clearly affect the average. However, we can obtain an accurate estimate if we assume that
the numbers are within some limited range. Assume the input numbers z1, z2, . . . , zn are from [a, b]
where a, b ∈ R with a ≤ b. Suppose you sample k input numbers (with replacement) and output
their average as the estimate for the true average α = (

∑
i zi)/n. Let X be the random variable

denoting the output value.

1

https://courses.engr.illinois.edu/cs498abd/fa2020/
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html

• Using Chebyshev’s inequality, show that for k ≥ (b−a)2
δε2

, we have

P[|X − α| ≥ ε] ≤ δ.

• Using the Chernoff inequality, show that there exists a constant c > 0 such that for k ≥
c(b−a)2 log(2/δ)

ε2
, we have

P[|X − α| ≥ ε] ≤ δ.

Problem 3. Quick Sort. Given an array A of n numbers (which we assume are distinct for
simplicity), the algorithm picks a pivot x uniformly at random from A and computes the rank of
x. If the rank of x is between n/4 and 3n/4 (call such a pivot a good pivot), it behaves like the
normal QuickSort in partitioning the array A and recursing on both sides. If the rank of x does
not satisfy the desired property (the pivot picked is not good), the algorithm simply repeats the
process of picking a pivot until it finds a good one. Note that in principle the algorithm may never
terminate!

• Write a formal description of the algorithm.

• Prove that the expected run time of this algorithm is O(n log n) on an array on n numbers.

• Prove that the algorithm terminates in O(n log n) time with high probability.

Problem 4. Pairwise Independence. Suppose we want to generate N pairwise independent
random variables in the range {0, 1, 2, . . . ,M − 1}. We will assume that N and M are powers of 2
and let N = {0, 1}n and M = {0, 1}m (hence n = logN and m = logM). We saw a scheme in the
lecture using mn bits. Here we will revisit that scheme in a different way and then see how it can
be made more randomness-efficient.

Pick a uniformly random matrix A ∈ {0, 1}m×n and a random vector b ∈ {0, 1}m. Then for a
vector v ∈ {0, 1}n, set Xv = Av + b mod 2 (by this we mean component-wise mod 2).

• Suppose we pick A and b uniformly at random. Show that under this scheme, for all w ∈
{0, 1}n where w 6= ~0 and for all γ ∈ {0, 1}m,

PA[Aw = γ mod 2] =
1

2m
.

Why does this guarantee that Xu and Xv are independent for u 6= v and u 6= ~0, v 6= ~0?

• We can make the following improvement. A matrix A is Toeplitz if the entries along each
diagonal are constant, i.e., Ai,j = Ai+1,j+1. Suppose we choose A uniformly at random from
the set of Toeplitz matrices whose entries are in {0, 1}. Show that under this scheme, it is
also the case that for all w ∈ {0, 1}n where w 6= ~0 and for all γ ∈ {0, 1}m,

PA[Aw = γ mod 2] =
1

2m
.

2

• How many random bits do we need to generate a random Toeplitz matrix A ∈ {0, 1}m×n and
how much storage (in bits) do you need to store it implicitly? Express this as a function of
N and M and compare with the number of random bits needed for the case when A is picked
as a random {0, 1} matrix.

Problem 5. Probabilistic counter. In lecture we analyzed probabilistic counting: initialize
a counter X to 1, and for every increment instruction, increment X with probability 1/2X . By
averaging many such estimators, we obtained a (1+ε)-approximation to n with good probability and
space usage was O(log log n). In this problem you will investigate a minor modification. Imagine
we still initialize X to 1, but we increment it with probability 1/(1 + a)X for some fixed a > 0.
(Note that your estimator for n would have to change from 2X − 1 to something else.)

How small must a be so that our estimate ñ of n satisfies |ñ − n| ≤ εn with at least 9/10
probability when we return the output of a single estimator instead of averaging many estimators
we did in the lecture? Also derive a bound S = S(n) on the space (in bits) so that this algorithm
uses at most S space with at least 9/10 probability by the end of the n increments.

Additional exercises (not to be submitted)

Problem 6. In class, we proved a powerful tail inequality called the “(multiplicative) Chernoff
bound” that we will use time and time again. In this exercise, we rewrite the Chernoff inequality
in a convenient form that is a little more interpretable and easier to apply.

Recall the Chernoff inequality, as follows. Let X1, X2, . . . , Xn ∈ [0, 1] be n independent, non-
negative, and uniformly bounded random variables. Let

µ = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

be the expected value of the sum. The Chernoff inequality states that for any δ > 0, we have

P[
∑n

i=1Xi ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)1+δ

)µ
and P[

∑n
i=1Xi ≤ (1− δ)µ] ≤

(
e−δ

(1−δ)1−δ

)µ
,

where for the second inequality we also further assume δ < 1.

Now let X1, . . . , Xn and µ be as above.

• Show that for x ≥ 0 sufficiently small, we have

x− (1 + x) ln(1 + x) ≤ −x
2

3
.

Hint: Consider the Taylor expansion ln(1 + x) = x− x2

2 + x3

3 −
x4

4 + x5

5 − · · · for x ∈ (−1, 1].

• Show that for ε ∈ [0, 1],

P

[
n∑
i=1

Xi ≥ (1 + ε)µ

]
≤ e−ε2µ/3.

3

• Show that for x ∈ [0, 1], we have

x+ (1− x) ln(1− x) ≥ x2

2
.

• Show that for ε ∈ [0, 1],

P

[
n∑
i=1

Xi ≤ (1− ε)µ

]
≤ e−ε2µ/2.

Problem 7. Exercises 2 and 3 from HW 4 of the 2016 algorithms course (https://courses.engr.
illinois.edu/cs473/fa2016/Homework/hw4.pdf)

4

https://courses.engr.illinois.edu/cs473/fa2016/Homework/hw4.pdf
https://courses.engr.illinois.edu/cs473/fa2016/Homework/hw4.pdf
https://courses.engr.illinois.edu/cs473/fa2016/Homework/hw4.pdf

