CS 374: Algorithms & Models of Computation, Spring 2015

NP-Completeness of 3-Color and SAT

Lecture 24 April 23, 2015

NP: languages that have non-deterministic polynomial time algorithms

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, L' \leq_P L

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

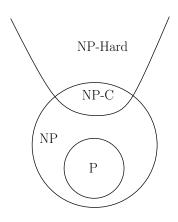
L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

SAT is NP-Complete.

Spring 2015

Pictorial View



P and NP

Possible scenarios:

- \bullet P = NP.
- $P \neq NP$

P and NP

Possible scenarios:

- \bullet P = NP.
- \bullet P \neq NP

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

P and NP

Possible scenarios:

- $\mathbf{0} P = NP.$
- \bullet P \neq NP

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem (Ladner)

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

Part I

MP-Completeness of Graph Coloring

Problem: Graph Coloring

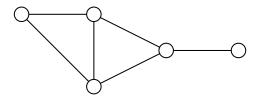
Instance: G = (V, E): Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do

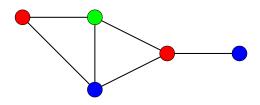
not get the same color?



Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?



Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Observation: If **G** is colored with **k** colors then each color class (nodes of same color) form an independent set in **G**. Thus, **G** can be partitioned into **k** independent sets iff **G** is **k**-colorable.

Graph **2**-Coloring can be decided in polynomial time.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite!

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

 ${f G}$ is 2-colorable iff ${f G}$ is bipartite! There is a linear time algorithm to check if ${f G}$ is bipartite using ${f BFS}$

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) ${\bf k}$ registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with **k** colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any k > 3

Class Room Scheduling

Given **n** classes and their meeting times, are **k** rooms sufficient?

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- \bullet an edge between $\mathbf{v_i}$ and $\mathbf{v_j}$ if classes \mathbf{i} and \mathbf{j} conflict

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- ullet an edge between $oldsymbol{v}_i$ and $oldsymbol{v}_j$ if classes i and j conflict

Exercise: **G** is **k**-colorable iff **k** rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

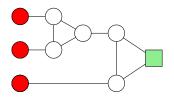
- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

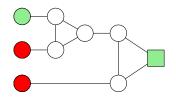
You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).



- (A) Yes.
- (B) No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).



- (A) Yes.
- (B) No.

3-Coloring is **NP-Complete**

- 3-Coloring is in NP.
 - Non-deterministically guess a 3-coloring for each node
 - Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables x_1, \ldots, x_n and **m** clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable $\mathbf{x_i}$ two nodes $\mathbf{v_i}$ and $\mathbf{\bar{v_i}}$ connected in a triangle with common Base

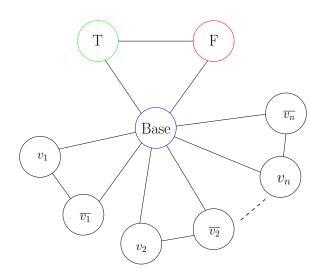
Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable $\mathbf{x_i}$ two nodes $\mathbf{v_i}$ and $\mathbf{\bar{v_i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\overline{\mathbf{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables x_1, \ldots, x_n and **m** clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable $\mathbf{x_i}$ two nodes $\mathbf{v_i}$ and $\mathbf{\bar{v_i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\overline{\mathbf{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

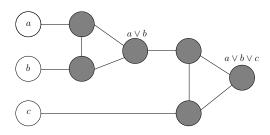


Clause Satisfiability Gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



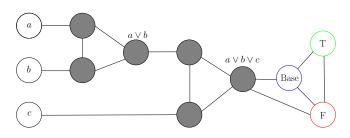
OR-Gadget Graph

Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

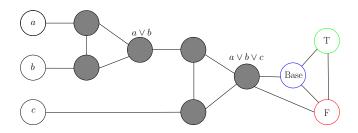
Property: if one of **a**, **b**, **c** is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



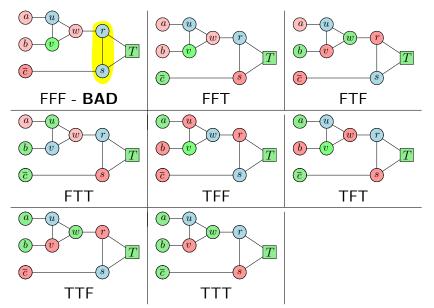
Reduction



Claim

No legal **3**-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal **3**-coloring of above graph.

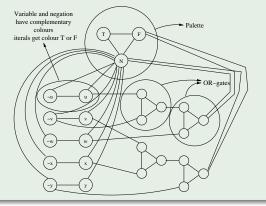
3 coloring of the clause gadget



Reduction Outline

Example

$$\varphi = (\mathbf{u} \vee \neg \mathbf{v} \vee \mathbf{w}) \wedge (\mathbf{v} \vee \mathbf{x} \vee \neg \mathbf{y})$$



arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable

• if x_i is assigned True, color v_i True and $\overline{v_i}$ False

- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and $\overline{v_i}$ False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and $\overline{v_i}$ False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- $oldsymbol{arphi}$ is satisfiable implies $oldsymbol{\mathsf{G}}_{arphi}$ is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

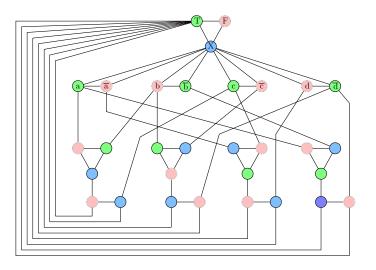
 \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable

ullet if $oldsymbol{v_i}$ is colored True then set $oldsymbol{x_i}$ to be True, this is a legal truth assignment

- $oldsymbol{arphi}$ is satisfiable implies $oldsymbol{\mathsf{G}}_{arphi}$ is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - ullet if $oldsymbol{v_i}$ is colored True then set $oldsymbol{x_i}$ to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR



Part II

Proof of Cook-Levin Theorem

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that *every* language $L \in NP$, $L \leq_P SAT$

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that every language $L \in NP$, $L \leq_P SAT$

Difficulty: Infinite number of languages in **NP**. Must *simultaneously* show a *generic* reduction strategy.

High-level Plan

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $L = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \}$

High-level Plan

What does it mean that $L \in NP$?

 $\textbf{L} \in \textbf{NP}$ implies that there is a non-deterministic TM M and polynomial p() such that

$$L = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \}$$

We will describe a reduction f_M that depends on M, p such that:

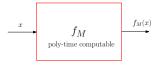
- f_M takes as input a string x and outputs a SAT formula $f_M(x)$
- f_M runs in time polynomial in |x|
- $x \in L$ if and only if $f_M(x)$ is satisfiable

Plan continued

 $f_M(x)$ is satisfiable if and only if $x \in L$ $f_M(x)$ is satisfiable if and only if non-det M accepts x in p(|x|) steps

28

Plan continued



 $f_M(x)$ is satisfiable if and only if $x \in L$ $f_M(x)$ is satisfiable if and only if non-det M accepts x in p(|x|) steps

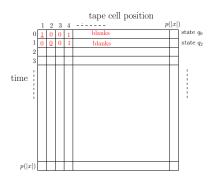
BIG IDEA

- $f_M(x)$ will express "M on input x accepts in p(|x|) steps"
- $f_M(x)$ will encode a computation history of M on x

 $f_M(x)$ will be a carefully constructed CNF formulat s.t if we have a satisfying assignment to it, then we will be able to see a complte accepting computation of M on x down to the last detail of where the head is, what transistion is chosen, what the tape contents are, at each step.

Tableu of Computation

M runs in time p(|x|) on x. Entire computation of **M** on x can be represented by a "tableau"



Row i gives contents of all cells at time iAt time 0 tape has input x followed by blanks Each row long enough to hold all cells M might ever have scanned.

Variable of $f_M(x)$

Four types of variable to describe computation of M on x

- T(b, h, i): tape cell at position h holds symbol b at time i. $1 \le h \le p(|x|), b \in \Gamma, 0 \le i \le p(|x|)$
- H(h, i): read/write head is at position h at time i. $1 \le h \le p(|x|)$, $0 \le i \le p(|x|)$
- S(q, i) state of M is q at time $i \in Q$, $0 \le i \le p(|x|)$
- I(j,i) instruction number j is executed at time i M is non-deterministic, need to specify transitions in some way. Number transitions as $1,2,\ldots,\ell$ where j'th transition is $<\mathbf{q}_j,\mathbf{b}_j,\mathbf{q}'_j,\mathbf{b}'_j,\mathbf{d}_j>$ indication $(\mathbf{q}'_j,\mathbf{b}'_j,\mathbf{d}_j)\in\delta(\mathbf{q}_j,\mathbf{b}_j),$ direction $\mathbf{d}_j\in\{-1,0,1\}.$

Number of variables is $O(p(|x|)^2)$ where constant in O() hides dependence on fixed machine M.

Notation

Some abbreviations for ease of notation

$$\bigwedge_{k=1}^m x_k$$
 means $x_1 \wedge x_2 \wedge \ldots \wedge x_m$

$$\bigvee_{k=1}^{m} x_k$$
 means $x_1 \lor x_2 \lor \ldots \lor x_m$

 $\bigoplus (x_1, x_2, \dots, x_k)$ is a formula that means exactly one of x_1, x_2, \dots, x_m is true. Can be converted to CNF form

Clauses of $f_M(x)$

 $f_M(x)$ is the conjunction of 8 clause groups:

$$f_{\mathsf{M}}(\mathsf{x}) = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4 \wedge \varphi_5 \wedge \varphi_6 \wedge \varphi_7 \wedge \varphi_8$$

where each φ_i is a CNF formula. Described in subsequent slides. **Property:** $f_M(x)$ is satisfied iff there is a truth assignment to the variables that simultaneously satisfy $\varphi_1, \ldots, \varphi_8$.

φ_1

 φ_1 asserts (is true iff) the variables are set T/F indicating that M starts in state \mathbf{q}_0 at time $\mathbf{0}$ with tape contents containing \mathbf{x} followed by blanks.

φ_2

 $arphi_2$ asserts ${\sf M}$ in exactly one state at any time ${\sf i}$

$$arphi_2 = \bigwedge_{i=0}^{p(|\mathsf{x}|)} \left(\oplus (\mathsf{S}(\mathsf{q}_0,\mathsf{i}),\mathsf{S}(\mathsf{q}_1,\mathsf{i}),\ldots,\mathsf{S}(\mathsf{q}_{|\mathsf{Q}|},\mathsf{i})) \right)$$

 φ_3 asserts that each tape cell holds a unique symbol at any given time.

$$\varphi_3 = \bigwedge_{\mathsf{i}=0}^{\mathsf{p}(|\mathsf{x}|)} \bigwedge_{\mathsf{h}=1}^{\mathsf{p}(|\mathsf{x}|)} \oplus (\mathsf{T}(\mathsf{b}_1,\mathsf{h},\mathsf{i}),\mathsf{T}(\mathsf{b}_2,\mathsf{h},\mathsf{i}),\ldots,\mathsf{T}(\mathsf{b}_{|\mathsf{\Gamma}|},\mathsf{h},\mathsf{i}))$$

For each time i and for each cell position h exactly one symbol $b \in \Gamma$ at cell position h at time i

φ_4

 φ_{4} asserts that the read/write head of \boldsymbol{M} is in exactly one position at any time \boldsymbol{i}

$$arphi_4 = \bigwedge_{i=0}^{p(|\mathsf{x}|)} (\oplus (\mathsf{H}(1,i),\mathsf{H}(2,i),\ldots,\mathsf{H}(\mathsf{p}(|\mathsf{x}|),i)))$$

φ_5

 φ_5 asserts that **M** accepts

- Let q_a be unique accept state of M
- without loss of generality assume M runs all p(|x|) steps

$$\varphi_5 = \mathsf{S}(\mathsf{q}_\mathsf{a},\mathsf{p}(|\mathsf{x}|))$$

State at time p(|x|) is q_a the accept state.

If we don't want to make assumption of running for all steps

$$arphi_5 = \bigvee_{\mathsf{i}=1}^{\mathsf{p}(|\mathsf{x}|)} \mathsf{S}(\mathsf{q}_\mathsf{a},\mathsf{i})$$

which means M enters accepts state at some time.

 $arphi_6$ asserts that M executes a unique instruction at each time

$$arphi_6 = igwedge_{\mathsf{i}=0}^{\mathsf{p}(|\mathsf{x}|)} \oplus (\mathsf{I}(1,\mathsf{i}),\mathsf{I}(2,\mathsf{i}),\ldots,\mathsf{I}(\mathsf{m},\mathsf{i}))$$

where **m** is max instruction number.

 φ_7 ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.

"If head is not at position h at time i then at time i+1 the symbol at cell h must be unchanged"

$$\varphi_7 = \bigwedge_{\mathsf{i}} \bigwedge_{\mathsf{h}} \bigwedge_{\mathsf{b} \neq \mathsf{c}} \left(\overline{\mathsf{H}(\mathsf{h},\mathsf{i})} \Rightarrow \overline{\mathsf{T}(\mathsf{b},\mathsf{h},\mathsf{i}) \bigwedge \mathsf{T}(\mathsf{c},\mathsf{h},\mathsf{i}+1)} \right)$$

since $A \Rightarrow B$ is same as $\neg A \lor B$, rewrite above in CNF form

$$\varphi_7 = \bigwedge_{\mathsf{i}} \bigwedge_{\mathsf{h}} \bigwedge_{\mathsf{b} \neq \mathsf{c}} \left(\mathsf{H}(\mathsf{h},\mathsf{i}) \vee \neg \mathsf{T}(\mathsf{b},\mathsf{h},\mathsf{i}) \vee \neg \mathsf{T}(\mathsf{c},\mathsf{h},\mathsf{i}+1)\right)$$

 φ_8 asserts that changes in tableu/tape correspond to transitions of **M** (as Lenny says, this is the big cookie).

Let j 'th instruction be $<\mathbf{q}_{j},\mathbf{b}_{j},\mathbf{q}_{j}^{\prime},\mathbf{b}_{j}^{\prime},\mathbf{d}_{j}>$

$$\begin{split} \varphi_8 &= \bigwedge_i \bigwedge_j (\textbf{I}(j,i) \Rightarrow \textbf{S}(q_j,i)) \text{ If instr } j \text{ executed at time } i \text{ then state must be correct to do } j \\ \bigwedge_i \bigwedge_j (\textbf{I}(j,i) \Rightarrow \textbf{S}(q_j',i+1)) \text{ and at next time unit, state must be the proper next state for instr } j \\ \bigwedge_i \bigwedge_h \bigwedge_j [(\textbf{I}(j,i) \bigwedge \textbf{H}(h,i)) \Rightarrow \textbf{T}(b_j,h,i)] \text{ if } j \text{ was executed and head was at position } h, \\ \text{then cell } h \text{ has correct symbol for } j \\ \bigwedge_i \bigwedge_j \bigwedge_h [(\textbf{I}(j,i) \bigwedge \textbf{H}(h,i)) \Rightarrow \textbf{T}(b_j',h,i+1)] \text{ if } j \text{ was done then at time } i \text{ with head} \\ \text{at } h \text{ then at next time step symbol } b_j' \text{ was indeed written in position } h \\ \bigwedge_i \bigwedge_j \bigwedge_h [(\textbf{I}(j,i) \bigwedge \textbf{H}(h,i)) \Rightarrow \textbf{H}(h+d_j,i+1)] \text{ and head is moved properly} \end{split}$$

according to instr i.

Proof of Correctness

(Sketch)

- Given M, x, poly-time algorithm to construct $f_M(x)$
- if $f_M(x)$ is satisfiable then the truth assignment completely specifies an accepting computation of M on x
- if M accepts x then the accepting computation leads to an "obvious" truth assignment to $f_M(x)$. Simply assign the variables according to the state of M and cells at each time i.

Thus M accepts x if and only if $f_M(x)$ is satisfiable