CS 374: Algorithms & Models of Computation, Spring 2015

NP Completeness

Lecture 23 April 21, 2015

Part I

NP-Completeness

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.
 - Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- \bullet P \subseteq NP
- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether P = NP.

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- We Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- \bullet X \in NP, and
- (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- ⇒ Suppose X can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - **2** We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.

- **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
- **3** Since $P \subset NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- ② and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- ② and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for **X**.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- SAT is in NP.
- every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- ② Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Question Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-5AT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- \circ SAT $<_{P}$ 3-SAT
- **3** 3-SAT \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **⑤** Independent Set ≤_P Clique
- **⑤** 3-SAT \leq_P 3-Color
- **3-SAT** \leq_{P} Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- \circ SAT \leq_{P} 3-SAT
- **3** 3-SAT \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **1** Independent Set \leq_P Clique
- **⑤** 3-SAT \leq_P 3-Color
- **3**-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

Part II

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3CNF formula φ

Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an

independent set of size ${\bf k}$ if and only if ${m arphi}$ is satisfiable.

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3 CNF formula φ

Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an

independent set of size ${\bf k}$ if and only if ${m arphi}$ is satisfiable.

 ${\sf G}_{arphi}$ should be constructable in time polynomial in size of ${m arphi}$

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3 CNF formula φ

Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an

independent set of size **k** if and only if φ is satisfiable. **G**_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- ② Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

 \bullet \bullet will have one vertex for each literal in a clause

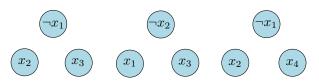


Figure : Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- $oldsymbol{G}_{\omega}$ will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

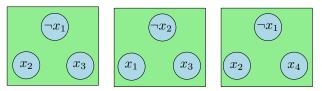


Figure : Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- $oldsymbol{G}_{\omega}$ will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

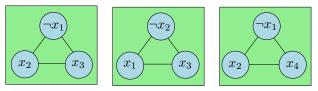


Figure : Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- $oldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

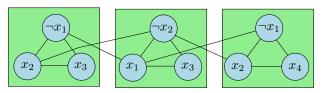


Figure : Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- **1** G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

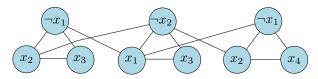


Figure : Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

 \Rightarrow Let **a** be the truth assignment satisfying arphi

Correctness

Proposition

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

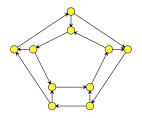
- ← Let S be an independent set of size k
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part III

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

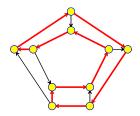
Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?



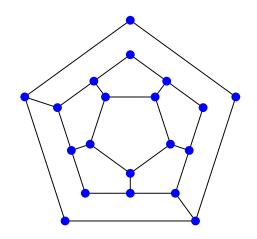
Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



Is the following graph Hamiltonianan?



- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in **NP**: exercise
- Hardness: We will show
 3-SAT <_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph \mathbf{G}_{φ} such that

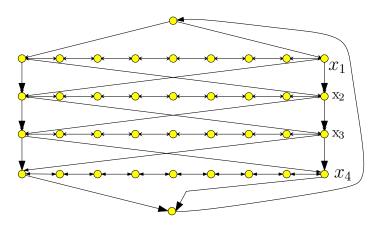
- ullet ${f G}_{arphi}$ has a Hamiltonian cycle if and only if ${oldsymbol{arphi}}$ is satisfiable
- ullet ${f G}_{arphi}$ should be constructible from ${oldsymbol arphi}$ by a polynomial time algorithm ${oldsymbol {\cal A}}$

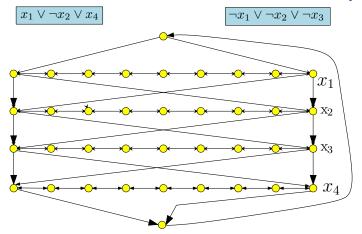
Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses C_1, C_2, \ldots, C_m .

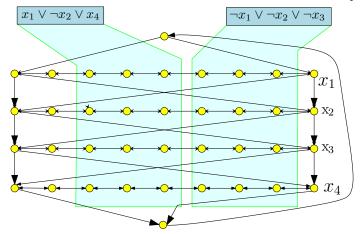
Reduction: First Ideas

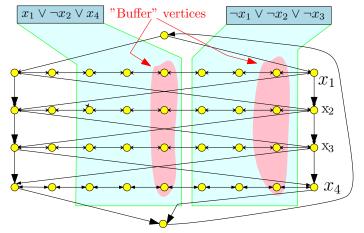
- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

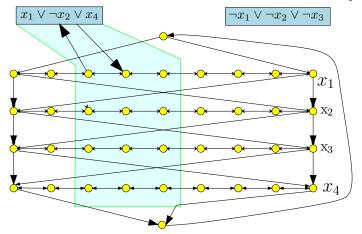
- ullet Traverse path ullet from left to right iff x_i is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)

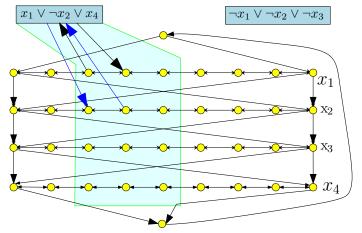


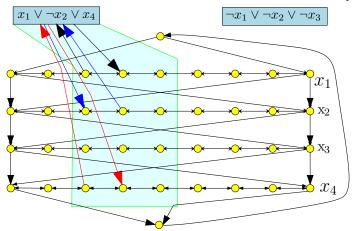


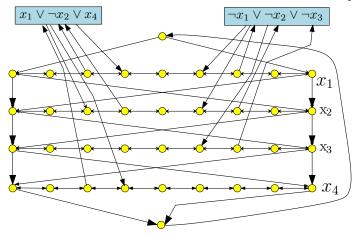












Correctness Proof

Proposition

 φ has a satisfying assignment iff \mathbf{G}_{φ} has a Hamiltonian cycle.

Proof.

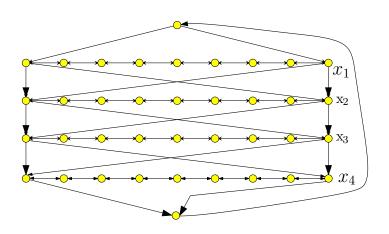
- \Rightarrow Let **a** be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path i from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j+1 on path i is 3j+2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example



Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove $\mathbf{c_j}$ from cycle, and get Hamiltonian cycle in $\mathbf{G} - \mathbf{c_j}$
- \bullet Consider Hamiltonian cycle in $G-\{c_1,\dots c_m\};$ it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

34

NP-Completeness

Theorem

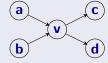
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

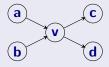


36

Goal: Given directed graph **G**, need to construct undirected graph **G**' such that **G** has Hamiltonian Path iff **G**' has Hamiltonian path

Reduction

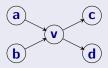
Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

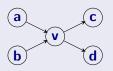
- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Goal: Given directed graph **G**, need to construct undirected graph **G**' such that **G** has Hamiltonian Path iff **G**' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)