- 1. Given a directed graph G = (V, E) with non-negative edge lengths $\ell(e), e \in E$ and a node $s \in V$, describe an algorithm to find the length of a shortest cycle containing the node s.
- 2. Suppose we have a collection of cities and different airlines offer flights between various pairs of cities. Some airlines only fly between some pairs of cities. Some pairs of cities are served by many airlines. Each airline charges perhaps different amounts for their one-way tickets. (a) Suppose you'd like to get from City A to City B at the least total cost. Describe an efficient solution. (Your solution may change planes to a different airline as needed.) (b) It turns out that airports charge usage taxes. Different airports may charge different amounts in tax. Your cost of traveling from A to B now includes all of the flight costs, plus all of the taxes of the airports that you stopover along the way from A to B. Model this as a graph problem and give an efficient solution to find the least cost way to get from A to B.
- 3. Suppose G is a graph with maximum degree d. Prove that the diameter of the graph is $\Omega(\log_d n)$ where n is the number of nodes. It is easier to consider d=5 or some other small constant for simplicity. *Hint*: Consider the BFS layers starting at any vertex v.
- 4. Suppose the diameter of an undirected simple graph is d. Prove that there is a node with degree at most 3n/d. Hint: Consider the BFS layers for the pair defining the diameter.