"CS 374" Spring 2015 — Homework 0

Due Tuesday, January 27, 2015 at 10am

••• Some important course policies •••

- Each student must submit individual solutions for this homework. You may use any source at your disposal—paper, electronic, or human—but you *must* cite *every* source that you use. See the academic integrity policies on the course web site for more details. For all future homeworks, groups of up to three students will be allowed to submit joint solutions.
- **Submit your solutions in Moodle.** See instructions on the course website and submit a separate pdf for each problem.
- Submit your solutions on standard printer/copier paper. If you plan to typeset your homework, you can find a MEX template on the course web site; well-typeset homework will get a small amount of extra credit. If you hand write your home work make sure that the pdf scan is easy to read. Illegible scans will receive no points.
- Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits that will trigger an automatic zero on any homework or exam problem. Yes, we are completely serious.
 - Give complete solutions, not just examples.
 - Declare all your variables.
 - Never use weak induction.
- Unlike previous editions of this and other theory courses we are not using the "I don't know" policy.

See the course web site for more information.

If you have any questions about these policies, please don't hesitate to ask in class, in office hours, or on Piazza.

1. Prove that in any undirected graph G = (V, E) with at least one edge there is a path between two distinct nodes u and v such that degree of u is equal to degree of v. Recall that the degree of a node x is the number of edges incident to x.

- 2. Recursively define a set L of strings over the alphabet $\{a, b\}$ as follows:
 - The empty string ε is in L.
 - For any two strings x and y in L, the string axby is also in L.
 - For any two strings x and y in L, the string bxay is also in L.
 - These are the only strings in *L*.

Prove by induction that

 $L = \{w \in \{a, b\}^* \mid w \text{ has equal number of } a\text{'s and } b\text{'s}\}.$

You may assume without proof that #(a, xy) = #(a, x) + #(a, y) for any symbol a and any strings x and y. Here #(a, w) for symbol a and string w is the number of occurrences of a in w.