
Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

The tree which fills the arms grew from the tiniest sprout;
the tower of nine storeys rose from a (small) heap of earth;
the journey of a thousand li commenced with a single step.

— Lao-Tzu, Tao Te Ching, chapter 64 (6th century BC),
translated by J. Legge (1891)

And I would walk five hundred miles,
And I would walk five hundred more,
Just to be the man who walks a thousand miles
To fall down at your door.

— The Proclaimers, “Five Hundred Miles (I’m Gonna Be)”,
Sunshine on Leith (2001)

Almost there. . . Almost there. . .

— Red Leader [Drewe Henley], Star Wars (1977)

27 All-Pairs Shortest Paths

In the previous lecture, we saw algorithms to find the shortest path from a source vertex s to a target
vertex t in a directed graph. As it turns out, the best algorithms for this problem actually find the shortest
path from s to every possible target (or from every possible source to t) by constructing a shortest path
tree. The shortest path tree specifies two pieces of information for each node v in the graph:

• dist(v) is the length of the shortest path (if any) from s to v;

• pred(v) is the second-to-last vertex (if any) the shortest path (if any) from s to v.

In this lecture, we want to generalize the shortest path problem even further. In the all pairs shortest
path problem, we want to find the shortest path from every possible source to every possible destination.
Specifically, for every pair of vertices u and v, we need to compute the following information:

• dist(u, v) is the length of the shortest path (if any) from u to v;

• pred(u, v) is the second-to-last vertex (if any) on the shortest path (if any) from u to v.

For example, for any vertex v, we have dist(v, v) = 0 and pred(v, v) = NULL. If the shortest path from u
to v is only one edge long, then dist(u, v) = w(u�v) and pred(u, v) = u. If there is no shortest path from
u to v—either because there’s no path at all, or because there’s a negative cycle—then dist(u, v) =∞
and pred(v, v) = NULL.

The output of our shortest path algorithms will be a pair of V × V arrays encoding all V 2 distances
and predecessors. Many maps include a distance matrix—to find the distance from (say) Champaign to
(say) Columbus, you would look in the row labeled ‘Champaign’ and the column labeled ‘Columbus’. In
these notes, I’ll focus almost exclusively on computing the distance array. The predecessor array, from
which you would compute the actual shortest paths, can be computed with only minor additions to the
algorithms I’ll describe (hint, hint).

27.1 Lots of Single Sources

The obvious solution to the all-pairs shortest path problem is just to run a single-source shortest path
algorithm V times, once for every possible source vertex! Specifically, to fill in the one-dimensional
subarray dist[s, ·], we invoke either Dijkstra’s or Shimbel’s algorithm starting at the source vertex s.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

OBVIOUSAPSP(V, E, w):
for every vertex s

dist[s, ·]← SSSP(V, E, w, s)

The running time of this algorithm depends on which single-source shortest path algorithm we use.
If we use Shimbel’s algorithm, the overall running time isΘ(V2E) = O(V 4). If all the edge weights are non-
negative, we can use Dijkstra’s algorithm instead, which decreases the running time toΘ(VE + V2 log V) =
O(V 3). For graphs with negative edge weights, Dijkstra’s algorithm can take exponential time, so we
can’t get this improvement directly.

27.2 Reweighting

One idea that occurs to most people is increasing the weights of all the edges by the same amount so
that all the weights become positive, and then applying Dijkstra’s algorithm. Unfortunately, this simple
idea doesn’t work. Different paths change by different amounts, which means the shortest paths in the
reweighted graph may not be the same as in the original graph.

2 2

4 4

3

s t

Increasing all the edge weights by 2 changes the shortest path s to t.

However, there is a more complicated method for reweighting the edges in a graph. Suppose each
vertex v has some associated cost c(v), which might be positive, negative, or zero. We can define a new
weight function w′ as follows:

w′(u�v) = c(u) +w(u�v)− c(v)

To give some intuition, imagine that when we leave vertex u, we have to pay an exit tax of c(u), and
when we enter v, we get c(v) as an entrance gift.

Now it’s not too hard to show that the shortest paths with the new weight function w′ are exactly the
same as the shortest paths with the original weight function w. In fact, for any path u v from one
vertex u to another vertex v, we have

w′(u v) = c(u) +w(u v)− c(v).

We pay c(u) in exit fees, plus the original weight of of the path, minus the c(v) entrance gift. At every
intermediate vertex x on the path, we get c(x) as an entrance gift, but then immediately pay it back as
an exit tax!

27.3 Johnson’s Algorithm

Johnson’s all-pairs shortest path algorithm finds a cost c(v) for each vertex, so that when the graph is
reweighted, every edge has non-negative weight.

Suppose the graph has a vertex s that has a path to every other vertex. Johnson’s algorithm computes
the shortest paths from s to every other vertex, using Shimbel’s algorithm (which doesn’t care if the edge
weights are negative), and then sets c(v)← dist(s, v), so the new weight of every edge is

w′(u�v) = dist(s, u) +w(u�v)− dist(s, v).

Why are all these new weights non-negative? Because otherwise, Shimbel’s algorithm wouldn’t be
finished! Recall that an edge u�v is tense if dist(s, u) + w(u�v) < dist(s, v), and that single-source

2

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

shortest path algorithms eliminate all tense edges. The only exception is if the graph has a negative
cycle, but then shortest paths aren’t defined, and Johnson’s algorithm simply aborts.

But what if the graph doesn’t have a vertex s that can reach everything? No matter where we start
Shimbel’s algorithm, some of those vertex costs will be infinite. Johnson’s algorithm avoids this problem
by adding a new vertex s to the graph, with zero-weight edges going from s to every other vertex, but
no edges going back into s. This addition doesn’t change the shortest paths between any other pair of
vertices, because there are no paths into s.

So here’s Johnson’s algorithm in all its glory.

JOHNSONAPSP(V, E, w) :
create a new vertex s
for every vertex v

w(s�v)← 0
w(v�s)←∞

dist[s, ·]← SHIMBEL(V, E, w, s)
if SHIMBEL found a negative cycle

fail gracefully
for every edge (u, v) ∈ E

w′(u�v)← dist[s, u] +w(u�v)− dist[s, v]
for every vertex u

dist[u, ·]← DIJKSTRA(V, E, w′, u)
for every vertex v

dist[u, v]← dist[u, v]− dist[s, u] + dist[s, v]

The algorithm spends Θ(V) time adding the artificial start vertex s, Θ(V E) time running SHIMBEL,
O(E) time reweighting the graph, and then Θ(V E + V 2 log V) running V passes of Dijkstra’s algorithm.
Thus, the overall running time is Θ(VE + V2 log V).

27.4 Dynamic Programming

There’s a completely different solution to the all-pairs shortest path problem that uses dynamic program-
ming instead of a single-source algorithm. For dense graphs where E = Ω(V 2), the dynamic programming
approach eventually leads to the same O(V 3) running time as Johnson’s algorithm, but with a much
simpler algorithm. In particular, the new algorithm avoids Dijkstra’s algorithm, which gets its efficiency
from Fibonacci heaps, which are rather easy to screw up in the implementation. In the rest of this
lecture, I will assume that the input graph contains no negative cycles.

As usual for dynamic programming algorithms, we first need to come up with a recursive formulation
of the problem. Here is an “obvious" recursive definition for dist(u, v):

dist(u, v) =

¨

0 if u= v

min
x�v

�

dist(u, x) +w(x�v)
�

otherwise

In other words, to find the shortest path from u to v, we consider all possible last edges x�v and
recursively compute the shortest path from u to x . Unfortunately, this recurrence doesn’t work! To
compute dist(u, v), we may need to compute dist(u, x) for every other vertex x . But to compute dist(u, x),
we may need to compute dist(u, v). We’re stuck in an infinite loop!

To avoid this circular dependency, we need an additional parameter that decreases at each recursion,
eventually reaching zero at the base case. One possibility is to include the number of edges in the shortest
path as this third magic parameter, just as we did in the dynamic programming formulation of Shimbel’s

3

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

algorithm. Let dist(u, v, k) denote the length of the shortest path from u to v that uses at most k edges.
Since we know that the shortest path between any two vertices has at most V −1 vertices, dist(u, v, V −1)
is the actual shortest-path distance. As in the single-source setting, we have the following recurrence:

dist(u, v, k) =











0 if u= v

∞ if k = 0 and u 6= v

min
x�v

�

dist(u, x , k− 1) +w(x�v)
�

otherwise

Turning this recurrence into a dynamic programming algorithm is straightforward. To make the algorithm
a little shorter, let’s assume that w(v�v) = 0 for every vertex v. Assuming the graph is stored in an
adjacency list, the resulting algorithm runs in Θ(V2E) time.

DYNAMICPROGRAMMINGAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v, 0]← 0
else

dist[u, v, 0]←∞

for k← 1 to V − 1
for all vertices u

for all vertices v
dist[u, v, k]←∞
for all edges x�v

if dist[u, v, k]> dist[u, x , k− 1] +w(x�v)
dist[u, v, k]← dist[u, x , k− 1] +w(x�v)

This algorithm was first sketched by Shimbel in 1955; in fact, this algorithm is just running V different
instances of Shimbel’s single-source algorithm, one for each possible source vertex. Just as in the dynamic
programming development of Shimbel’s single-source algorithm, we don’t actually need the inner loop
over vertices v, and we only need a two-dimensional table. After the kth iteration of the main loop in
the following algorithm, dist[u, v] lies between the true shortest path distance from u to v and the value
dist[u, v, k] computed in the previous algorithm.

SHIMBELAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v]← 0
else

dist[u, v]←∞

for k← 1 to V − 1
for all vertices u

for all edges x�v
if dist[u, v]> dist[u, x] +w(x�v)

dist[u, v]← dist[u, x] +w(x�v)

27.5 Divide and Conquer

But we can make a more significant improvement. The recurrence we just used broke the shortest path
into a slightly shorter path and a single edge, by considering all predecessors. Instead, let’s break it

4

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

into two shorter paths at the middle vertex of the path. This idea gives us a different recurrence for
dist(u, v, k). Once again, to simplify things, let’s assume w(v�v) = 0.

dist(u, v, k) =

¨

w(u�v) if k = 1

min
x

�

dist(u, x , k/2) + dist(x , v, k/2)
�

otherwise

This recurrence only works when k is a power of two, since otherwise we might try to find the shortest
path with a fractional number of edges! But that’s not really a problem, since dist(u, v, 2dlg V e) gives us
the overall shortest distance from u to v. Notice that we use the base case k = 1 instead of k = 0, since
we can’t use half an edge.

Once again, a dynamic programming solution is straightforward. Even before we write down the
algorithm, we can tell the running time is Θ(V3 log V)—we consider V possible values of u, v, and x ,
but only dlg V e possible values of k.

FASTDYNAMICPROGRAMMINGAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for i← 1 to dlg V e 〈〈k = 2i〉〉
for all vertices u

for all vertices v
dist[u, v, i]←∞
for all vertices x

if dist[u, v, i]> dist[u, x , i − 1] + dist[x , v, i − 1]
dist[u, v, i]← dist[u, x , i − 1] + dist[x , v, i − 1]

This algorithm is not the same as V invocations of any single-source algorithm; in particular, the
innermost loop does not simply relax tense edges. However, we can remove the last dimension of the
table, using dist[u, v] everywhere in place of dist[u, v, i], just as in Shimbel’s single-source algorithm,
thereby reducing the space from O(V 3) to O(V 2).

FASTSHIMBELAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for i← 1 to dlg V e
for all vertices u

for all vertices v
for all vertices x

if dist[u, v]> dist[u, x] + dist[x , v]
dist[u, v]← dist[u, x] + dist[x , v]

This faster algorithm was discovered by Leyzorek et al. in 1957, in the same paper where they describe
Dijkstra’s algorithm.

27.6 Aside: ‘Funny’ Matrix Multiplication

There is a very close connection (first observed by Shimbel, and later independently by Bellman) between
computing shortest paths in a directed graph and computing powers of a square matrix. Compare the
following algorithm for multiplying two n× n matrices A and B with the inner loop of our first dynamic
programming algorithm. (I’ve changed the variable names in the second algorithm slightly to make the
similarity clearer.)

5

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

MATRIXMULTIPLY(A, B):
for i← 1 to n

for j← 1 to n
C[i, j]← 0
for k← 1 to n

C[i, j]← C[i, j] + A[i, k] · B[k, j]

APSPINNERLOOP:
for all vertices u

for all vertices v
D′[u, v]←∞
for all vertices x

D′[u, v]←min
�

D′[u, v], D[u, x] +w[x , v]
	

The only difference between these two algorithms is that we use addition instead of multiplication and
minimization instead of addition. For this reason, the shortest path inner loop is often referred to as
‘funny’ matrix multiplication.

DYNAMICPROGRAMMINGAPSP is the standard iterative algorithm for computing the (V − 1)th ‘funny
power’ of the weight matrix w. The first set of for loops sets up the ‘funny identity matrix’, with zeros
on the main diagonal and infinity everywhere else. Then each iteration of the second main for loop
computes the next ‘funny power’. FASTDYNAMICPROGRAMMINGAPSP replaces this iterative method for
computing powers with repeated squaring, exactly like we saw at the beginning of the semester. The fast
algorithm is simplified slightly by the fact that unless there are negative cycles, every ‘funny power’ after
the V th is the same.

There are faster methods for multiplying matrices, similar to Karatsuba’s divide-and-conquer algo-
rithm for multiplying integers. (Google for ‘Strassen’s algorithm’.) Unfortunately, these algorithms us
subtraction, and there’s no ‘funny’ equivalent of subtraction. (What’s the inverse operation for min?)
So at least for general graphs, there seems to be no way to speed up the inner loop of our dynamic
programming algorithms.

Fortunately, this isn’t true. There a beautiful randomized algorithm, discovered by Alon, Galil,
Margalit, and Noar1, that computes all-pairs shortest paths in undirected graphs in O(M(V) log2 V)
expected time, where M(V) is the time to multiply two V × V integer matrices. A simplified version of
this algorithm for unweighted graphs was discovered by Seidel.2

27.7 Floyd-(Roy-Kleene-)Warshall

Our fast dynamic programming algorithm is still a factor of O(log V) slower than Johnson’s algorithm. A
different formulation that removes this logarithmic factor was proposed in 1962 by Robert Floyd, slightly
generalizing an algorithm of Stephen Warshall published earlier in the same year. (In fact, Warshall’s
algorithm was independently discovered by Bernard Roy in 1959, but the underlying technique was
used even earlier by Stephen Kleene3 in 1951.) Warshall’s (and Roy’s and Kleene’s) insight was to use a
different third parameter in the dynamic programming recurrence.

Number the vertices arbitrarily from 1 to V . For every pair of vertices u and v and every integer r,
we define a path π(u, v, r) as follows:

1Noga Alon, Zvi Galil, Oded Margalit*, and Moni Naor. Witnesses for Boolean matrix multiplication and for shortest paths.
Proc. 33rd FOCS 417-426, 1992. See also Noga Alon, Zvi Galil, Oded Margalit*. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences 54(2):255–262, 1997.

2Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and
System Sciences, 51(3):400-403, 1995. This is one of the few algorithms papers where (in the conference version at least) the
algorithm is completely described and analyzed in the abstract of the paper.

3Pronounced “clay knee”, not “clean” or “clean-ee” or “clay-nuh” or “dimaggio”.

6

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

π(u, v, r) := the shortest path from u to v where every intermediate vertex (that is, every
vertex except u and v) is numbered at most r.

If r = 0, we aren’t allowed to use any intermediate vertices, so π(u, v, 0) is just the edge (if any) from
u to v. If r > 0, then either π(u, v, r) goes through the vertex numbered r, or it doesn’t. If π(u, v, r) does
contain vertex r, it splits into a subpath from u to r and a subpath from r to v, where every intermediate
vertex in these two subpaths is numbered at most r − 1. Moreover, the subpaths are as short as possible
with this restriction, so they must be π(u, r, r −1) and π(r, v, r − 1). On the other hand, if π(u, v, r) does
not go through vertex r, then every intermediate vertex in π(u, v, r) is numbered at most r − 1; since
π(u, v, r) must be the shortest such path, we have π(u, v, r) = π(u, v, r − 1).

u v
intermediate nodes ≤ r

u v

r

intermediate nodes ≤ r-1

interm
ediate

nodes ≤
 r-1

intermediate

nodes ≤ r-1

— or —=

Recursive structure of the restricted shortest path π(u, v, r).

This recursive structure implies the following recurrence for the length of π(u, v, r), which we will
denote by dist(u, v, r):

dist(u, v, r) =

(

w(u�v) if r = 0

min
�

dist(u, v, r − 1), dist(u, r, r − 1) + dist(r, v, r − 1)
	

otherwise

We need to compute the shortest path distance from u to v with no restrictions, which is just dist(u, v, V).
Once again, we should immediately see that a dynamic programming algorithm will implement this
recurrence in Θ(V3) time.

FLOYDWARSHALL(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for r ← 1 to V
for all vertices u

for all vertices v
if dist[u, v, r − 1]< dist[u, r, r − 1] + dist[r, v, r − 1]

dist[u, v, r]← dist[u, v, r − 1]
else

dist[u, v, r]← dist[u, r, r − 1] + dist[r, v, r − 1]

Just like our earlier algorithms, we can simplify the algorithm by removing the third dimension of
the memoization table. Also, because the vertex numbering was chosen arbitrarily, there’s no reason to
refer to it explicitly in the pseudocode.

FLOYDWARSHALL2(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for all vertices r
for all vertices u

for all vertices v
if dist[u, v]> dist[u, r] + dist[r, v]

dist[u, v]← dist[u, r] + dist[r, v]

7

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

Now compare this algorithm with FASTSHIMBELAPSP. Instead of O(log V) passes through all triples of
vertices, FLOYDWARSHALL2 only requires a single pass, but only because it uses a different nesting order
for the three for-loops!

27.8 Converting DFAs to regular expressions

Floyd’s algorithm is a special case of a more general method for solving problems involving paths between
vertices in graphs. The earliest example (that I know of) of this technique is an 1951 algorithm of
Stephen Kleene to convert a deterministic finite automaton into an equivalent regular expression.

Recall that a deterministic finite automaton (DFA) formally consists of the following components:

• A finite set Σ, called the alphabet, and whose elements we call symbols.

• A finite set Q, whose elements are called states.

• An initial state s ∈Q.

• A subset A⊆Q of accepting states.

• A transition function δ : Q×Σ→Q.

The extended transition function δ∗ : Q×Σ∗→Q is recursively defined as follows:

δ∗(q, w) :=

¨

q if w= ε,
δ∗(δ(q, a), x) if w= ax for some a ∈ Σ and x ∈ Σ∗.

Finally, a DFA accepts a string w ∈ Σ∗ if and only if δ∗(s, w) ∈ A.
Equivalently, a DFA is a directed (multi-)graph with labeled edges whose vertices are the states, such

that each vertex (state) has exactly one outgoing edge (transition) labeled with each symbol in Σ. There
is a special “start” vertex s, and a subset A of the vertices are marked as “accepting”. For any string
w ∈ Σ∗, there is a unique walk starting at s whose sequence of edge labels is w. The DFA accepts w if
and only if this walk ends at a state in A.

Kleene described the following algorithm to convert DFAs into equivalent regular expressions. Suppose
we are given a DFA M with n states, where (without loss of generality) each state is identified by an
integer between 1 and n. Let L(i, j , r) denote the set of all strings that describe walks in M that start at
state i and end at state j, such that every intermediate state has index at most r. Thus, the language
accepted by M is precisely

L(M) =
⋃

q∈A
L(s, q, n).

We prove inductively that every language L(i, j, r) is regular, by recursively constructing a regular
expression R(i, j, r) that represents L(i, j, r). There are two cases to consider.

• First, suppose r = 0. The language L(i, j, 0) contains the labels walks from state i to state j that
do not pass through any intermediate states. Thus, every string in L(i, j, 0) has length at most 1.
Specifically, for any symbol a ∈ Σ, we have a ∈ L(i, j, 0) if and only if δ(i, a) = j, and we have
ε ∈ L(i, j, 0) if and only if i = j. Thus, L(i, j, 0) is always finite, and therefore regular.

For example, the DFA sown on the next page defines the following regular languages L(i, j, 0).

R[1, 1,0] = ε + 0 R[2,1, 0] = 0 R[3,1, 0] =∅
R[1, 2,0] = 1 R[2,2, 0] = ε R[3,2, 0] =∅
R[1, 3,0] =∅ R[2,3, 0] = 1 R[3,3, 0] = ε + 0+ 1

8

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

311 2
1

0

0,10

An example DFA

• Now suppose r > 0. Each string w ∈ L(i, j, r) describes a walk from state i to state j where
every intermediate state has index at most r. If this walk does not pass through state r, then w ∈
L(i, j, r−1) by definition. Otherwise, we can split w into a sequence of substrings w = w1 ·w2 · · ·w`
at the points where the walk visits state r. These substrings have the following properties:

– The prefix w1 describes a walk from state i to state r and thus belongs to L(i, r, r − 1).
– The suffix w` describes a walk from state r to state j and thus belongs to L(r, j, r − 1).
– For every other index k, the substring wk describes a walk from state r to state r and thus

belongs to L(r, r, r − 1).

We conclude that

L(i, j, r) = L(i, j, r − 1) ∪ L(i, r, r − 1) • L(r, r, r − 1)∗ • L(r, j, r − 1).

i j
intermediate states ≤ r

i j

r

intermediate states ≤ r-1

intermediate

states ≤
 r-1

intermediate

states ≤ r-1

— or —=

intermediate
states ≤ r-1

Recursive structure of the regular language L(i, j, r).

Putting these pieces together, we can recursively define a regular expression R(i, j, r) that describes
the language L(i, j, r), as follows:

R(i, j, r) :=















ε +
∑

δ(i,a)= j a if r = 0 and i = j
∑

δ(i,a)= j a if r = 0 and i 6= j

R(i, j, r − 1) + R(i, r, r − 1) • R(r, r, r − 1)∗ • R(r, j, r − 1) otherwise

Kleene’s algorithm evaluates this recurrence bottom-up using the natural dynamic programming algo-
rithm. We memoize the previous recurrence into a three-dimensional array R[1 .. n, 1 .. n, 0 .. n], which
we traverse by increasing r in the outer loop, and in arbitrary order in the inner two loops.

9

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

KLEENE(Σ, n,δ, F):
〈〈Base cases〉〉
for i← 1 to n

for j← 1 to n
if i = j then R[i, j, 0]← ε else R[i, j, 0]←∅
for all symbols a ∈ Σ

if δ[i, a] = j
R[i, j, 0]← R[i, j, 0] + a

〈〈Recursive cases〉〉
for r ← 1 to n

for i← 1 to n
for j← 1 to n

R[i, j, r]← R[i, j, r − 1] + R[i, r, r − 1] • R[r, r, r − 1]∗ • R[r, j, r − 1]

〈〈Assemble the final result〉〉
R←∅
for q← 0 to n− 1

if q ∈ F
R← R+ R[1, q, n− 1]

return R

For purposes of analysis, let’s assume the alphabetΣ has constant size. Assuming each alternation (+),
concatenation (•), and Kleene closure (∗) operation requires constant time, the entire algorithm runs in
O(n3) time.

However, regular expressions over an alphabet Σ are normally represented either as standard strings
(arrays) over the larger alphabet Σ∪{+,•,*,(,), 3}, or as regular expression trees, whose internal nodes
are +, •, and ∗ operators and whose leaves are symbols and εs. In either representation, the regular
expressions in Kleene’s algorithm grow in size by roughly a factor of 4 in each iteration of the outer loop,
at least in the worst case. Thus, in the worst case, each regular expression R[i, j, r] has size O(4r), the
size of the final output expression is O(4nn), and entire algorithm runs in O(4nn2) time.

So we shouldn’t do this. After all, the running time is exponential, and exponential time is bad.
Right? Moreover, this exponential dependence is unavoidable; Hermann Gruber and Markus Holzer
proved in 20084 that there are n-state DFAs over the binary alphabet {0,1} such that any equivalent
regular expression has length 2Ω(n).

Well, maybe it’s not so bad. The output regular expression has exponential size because it contains
multiple copies of the same subexpressions; similarly, the regular expression tree has exponential size
because it contains multiples copies of several subtrees. But it’s precisely this exponential behavior that
we use dynamic programming to avoid! In fact, it’s not hard to modify Kleene’s algorithm to compute
a regular expression dag of size O(n3), in O(n3) time, that (intuitively) contains each subexpression
R[i, j, r] only once. This regular expression dag has exactly the same relationship to the regular expression
tree as the dependency graph of Kleene’s algorithm has to the recursion tree of its underlying recurrence.

Exercises

1. All of the algorithms discussed in this lecture fail if the graph contains a negative cycle. Johnson’s
algorithm detects the negative cycle in the initialization phase (via Shimbel’s algorithm) and aborts;
the dynamic programming algorithms just return incorrect results. However, all of these algorithms
can be modified to return correct shortest-path distances, even in the presence of negative cycles.

4Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity, and regular expression size. Proc. 35th ICALP,
39–50, 2008.

10

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

Specifically, if there is a path from vertex u to a negative cycle and a path from that negative cycle
to vertex v, the algorithm should report that dist[u, v] = −∞. If there is no directed path from u
to v, the algorithm should return dist[u, v] =∞. Otherwise, dist[u, v] should equal the length of
the shortest directed path from u to v.

(a) Describe how to modify Johnson’s algorithm to return the correct shortest-path distances,
even if the graph has negative cycles.

(b) Describe how to modify the Floyd-Warshall algorithm (FLOYDWARSHALL2) to return the
correct shortest-path distances, even if the graph has negative cycles.

11

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

2. All of the shortest-path algorithms described in this note can also be modified to return an explicit
description of some negative cycle, instead of simply reporting that a negative cycle exists.

(a) Describe how to modify Johnson’s algorithm to return either the matrix of shortest-path
distances or a negative cycle.

(b) Describe how to modify the Floyd-Warshall algorithm (FLOYDWARSHALL2) to return either
the matrix of shortest-path distances or a negative cycle.

If the graph contains more than one negative cycle, your algorithms may choose one arbitrarily.

3. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. Suppose the vertices of G are partitioned into k disjoint subsets V1, V2, . . . , Vk; that is,
every vertex of G belongs to exactly one subset Vi . For each i and j, let δ(i, j) denote the minimum
shortest-path distance between vertices in Vi and vertices in Vj:

δ(i, j) =min
�

dist(u, v)
�

� u ∈ Vi and v ∈ Vj

	

.

Describe an algorithm to compute δ(i, j) for all i and j in time O(V 2 + kE log E).

4. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero.

(a) How could we delete an arbitrary vertex v from this graph, without changing the shortest-path
distance between any other pair of vertices? Describe an algorithm that constructs a directed
graph G′ = (V ′, E′) with weighted edges, where V ′ = V \ {v}, and the shortest-path distance
between any two nodes in H is equal to the shortest-path distance between the same two
nodes in G, in O(V 2) time.

(b) Now suppose we have already computed all shortest-path distances in G′. Describe an
algorithm to compute the shortest-path distances from v to every other vertex, and from
every other vertex to v, in the original graph G, in O(V 2) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in O(V 3)
time. (The resulting algorithm is not the same as Floyd-Warshall!)

5. In this problem we will discover how you, too, can be employed by Wall Street and cause a major
economic collapse! The arbitrage business is a money-making scheme that takes advantage of
differences in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1
yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert
his money from dollars to yen, then from yen to euros, and finally from euros back to dollars,
ending with $1.44! The cycle of currencies $ → ¥ → € → $ is called an arbitrage cycle. Of
course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely
fast algorithms.

Suppose n different currencies are traded in your currency market. You are given the matrix
R[1 .. n, 1 .. n] of exchange rates between every pair of currencies; for each i and j, one unit of
currency i can be traded for R[i, j] units of currency j. (Do not assume that R[i, j] · R[j, i] = 1.)

(a) Describe an algorithm that returns an array V [1 .. n], where V [i] is the maximum amount
of currency i that you can obtain by trading, starting with one unit of currency 1, assuming
there are no arbitrage cycles.

12

Algorithms Lecture 27: All-Pairs Shortest Paths [Fa’14]

(b) Describe an algorithm to determine whether the given matrix of currency exchange rates
creates an arbitrage cycle.

(c) Modify your algorithm from part (b) to actually return an arbitrage cycle, if it exists.

?6. Let G = (V, E) be an undirected, unweighted, connected, n-vertex graph, represented by the
adjacency matrix A[1 .. n, 1 .. n]. In this problem, we will derive Seidel’s sub-cubic algorithm to
compute the n× n matrix D[1 .. n, 1 .. n] of shortest-path distances using fast matrix multiplication.
Assume that we have a subroutine MATRIXMULTIPLY that multiplies two n× n matrices in Θ(nω)
time, for some unknown constant ω≥ 2.5

(a) Let G2 denote the graph with the same vertices as G, where two vertices are connected by
a edge if and only if they are connected by a path of length at most 2 in G. Describe an
algorithm to compute the adjacency matrix of G2 using a single call to MATRIXMULTIPLY and
O(n2) additional time.

(b) Suppose we discover that G2 is a complete graph. Describe an algorithm to compute the
matrix D of shortest path distances in O(n2) additional time.

(c) Let D2 denote the (recursively computed) matrix of shortest-path distances in G2. Prove that
the shortest-path distance from node i to node j is either 2 · D2[i, j] or 2 · D2[i, j]− 1.

(d) Suppose G2 is not a complete graph. Let X = D2 · A, and let deg(i) denote the degree of
vertex i in the original graph G. Prove that the shortest-path distance from node i to node j
is 2 · D2[i, j] if and only if X [i, j]≥ D2[i, j] · deg(i).

(e) Describe an algorithm to compute the matrix of shortest-path distances in G in O(nω log n)
time.

5The matrix multiplication algorithm you already know runs in Θ(n3) time, but this is not the fastest algorithm known.
The current record is ω ≈ 2.3727, due to Virginia Vassilevska Williams. Determining the smallest possible value of ω is a
long-standing open problem; many people believe there is an undiscovered O(n2)-time algorithm for matrix multiplication.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	All-Pairs Shortest Paths
	Lots of Single Sources
	Reweighting
	Johnson's Algorithm
	Dynamic Programming
	Divide and Conquer
	Aside: `Funny' Matrix Multiplication
	Floyd-(Roy-Kleene-)Warshall
	Converting DFAs to regular expressions

