
Algorithms Lecture 25: Minimum Spanning Trees [Fa’14]

We must all hang together, gentlemen, or else we shall most assuredly
hang separately.

— Benjamin Franklin, at the signing of the
Declaration of Independence (July 4, 1776)

It is a very sad thing that nowadays there is so little useless information.

— Oscar Wilde

A ship in port is safe, but that is not what ships are for.

— Rear Admiral Grace Murray Hopper

25 Minimum Spanning Trees

25.1 Introduction

Suppose we are given a connected, undirected, weighted graph. This is a graph G = (V, E) together with
a function w: E→ R that assigns a real weight w(e) to each edge e, which may be positive, negative, or
zero. Our task is to find the minimum spanning tree of G, that is, the spanning tree T that minimizes
the function

w(T ) =
∑

e∈T

w(e).

To keep things simple, I’ll assume that all the edge weights are distinct: w(e) 6= w(e′) for any pair of
edges e and e′. Distinct weights guarantee that the minimum spanning tree of the graph is unique.
Without this condition, there may be several different minimum spanning trees. For example, if all the
edges have weight 1, then every spanning tree is a minimum spanning tree with weight V − 1.
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A weighted graph and its minimum spanning tree.

If we have an algorithm that assumes the edge weights are unique, we can still use it on graphs
where multiple edges have the same weight, as long as we have a consistent method for breaking ties.
One way to break ties consistently is to use the following algorithm in place of a simple comparison.
SHORTEREDGE takes as input four integers i, j, k, l, and decides which of the two edges (i, j) and (k, l)
has “smaller” weight.

SHORTEREDGE(i, j, k, l)
if w(i, j)< w(k, l) then return (i, j)
if w(i, j)> w(k, l) then return (k, l)
if min(i, j)<min(k, l) then return (i, j)
if min(i, j)>min(k, l) then return (k, l)
if max(i, j)<max(k, l) then return (i, j)
〈〈if max(i,j) < max(k,l) 〉〉 return (k, l)
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25.2 The Only Minimum Spanning Tree Algorithm

There are several different methods for computing minimum spanning trees, but really they are all
instances of the following generic algorithm. The situation is similar to the previous lecture, where we
saw that depth-first search and breadth-first search were both instances of a single generic traversal
algorithm.

The generic minimum spanning tree algorithm maintains an acyclic subgraph F of the input graph G,
which we will call an intermediate spanning forest. F is a subgraph of the minimum spanning tree of G,
and every component of F is a minimum spanning tree of its vertices. Initially, F consists of n one-node
trees. The generic algorithm merges trees together by adding certain edges between them. When the
algorithm halts, F consists of a single n-node tree, which must be the minimum spanning tree. Obviously,
we have to be careful about which edges we add to the evolving forest, since not every edge is in the
minimum spanning tree.

The intermediate spanning forest F induces two special types of edges. An edge is useless if it is
not an edge of F , but both its endpoints are in the same component of F . For each component of F ,
we associate a safe edge—the minimum-weight edge with exactly one endpoint in that component.
Different components might or might not have different safe edges. Some edges are neither safe nor
useless—we call these edges undecided.

All minimum spanning tree algorithms are based on two simple observations.

Lemma 1. The minimum spanning tree contains every safe edge.

Proof: In fact we prove the following stronger statement: For any subset S of the vertices of G, the
minimum spanning tree of G contains the minimum-weight edge with exactly one endpoint in S. We
prove this claim using a greedy exchange argument.

Let S be an arbitrary subset of vertices of G; let e be the lightest edge with exactly one endpoint in S;
and let T be an arbitrary spanning tree that does not contain e. Because T is connected, it contains a
path from one endpoint of e to the other. Because this path starts at a vertex of S and ends at a vertex not
in S, it must contain at least one edge with exactly one endpoint in S; let e′ be any such edge. Because T
is acyclic, removing e′ from T yields a spanning forest with exactly two components, one containing each
endpoint of e. Thus, adding e to this forest gives us a new spanning tree T ′ = T − e′ + e. The definition
of e implies w(e′)> w(e), which implies that T ′ has smaller total weight than T . We conclude that T is
not the minimum spanning tree, which completes the proof. �

e’

e

Proving that every safe edge is in the minimum spanning tree. Black vertices are in the subset S.

Lemma 2. The minimum spanning tree contains no useless edge.

Proof: Adding any useless edge to F would introduce a cycle. �
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Our generic minimum spanning tree algorithm repeatedly adds one or more safe edges to the evolving
forest F . Whenever we add new edges to F , some undecided edges become safe, and others become
useless. To specify a particular algorithm, we must decide which safe edges to add, and we must describe
how to identify new safe and new useless edges, at each iteration of our generic template.

25.3 Borůvka’s Algorithm

The oldest and arguably simplest minimum spanning tree algorithm was discovered by Borůvka in 1926,
long before computers even existed, and practically before the invention of graph theory!1 The algorithm
was rediscovered by Choquet in 1938; again by Florek, Łukaziewicz, Perkal, Stienhaus, and Zubrzycki in
1951; and again by Sollin some time in the early 1960s. Because Sollin was the only Western computer
scientist in this list—Choquet was a civil engineer; Florek and his co-authors were anthropologists—this
is often called “Sollin’s algorithm”, especially in the parallel computing literature.

The Borůvka/Choquet/Florek/Łukaziewicz/Perkal/Stienhaus/Zubrzycki/Sollin algorithm can be
summarized in one line:

BORŮVKA: Add ALL the safe edges2 and recurse.
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Borůvka’s algorithm run on the example graph. Thick edges are in F .
Arrows point along each component’s safe edge. Dashed (gray) edges are useless.

We can find all the safe edge in the graph in O(E) time as follows. First, we count the components
of F using whatever-first search, using the standard wrapper function. As we count, we label every
vertex with its component number; that is, every vertex in the first traversed component gets label 1,
every vertex in the second component gets label 2, and so on.

If F has only one component, we’re done. Otherwise, we compute an array S[1 .. V ] of edges, where
S[i] is the minimum-weight edge with one endpoint in the ith component (or a sentinel value NULL if

1Leonard Euler published the first graph theory result, his famous theorem about the bridges of Königsburg, in 1736.
However, the first textbook on graph theory, written by Dénes König, was not published until 1936.

2See also: Allie Brosh, “This is Why I’ll Never be an Adult”, Hyperbole and a Half, June 17, 2010. Actually, just go see
everything in Hyperbole and a Half. And then go buy the book. And an extra copy for your cat.
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there are less than i components). To compute this array, we consider each edge uv in the input graph G.
If the endpoints u and v have the same label, then uv is useless. Otherwise, we compare the weight of
uv to the weights of S[label(u)] and S[label(v)] and update the array entries if necessary.

BORŮVKA(V, E):
F = (V,∅)
count← COUNTANDLABEL(F)
while count> 1

ADDALLSAFEEDGES(E, F, count)
count← COUNTANDLABEL(F)

return F

ADDALLSAFEEDGES(E, F, count):
for i← 1 to count

S[i]← NULL 〈〈sentinel: w(NULL) :=∞〉〉
for each edge uv ∈ E

if label(u) 6= label(v)
if w(uv)< w(S[label(u)])

S[label(u)]← uv
if w(uv)< w(S[label(v)])

S[label(v)]← uv
for i← 1 to count

if S[i] 6= NULL

add S[i] to F

Each call to TRAVERSEALL requires O(V ) time, because the forest F has at most V −1 edges. Assuming
the graph is represented by an adjacency list, the rest of each iteration of the main while loop requires
O(E) time, because we spend constant time on each edge. Because the graph is connected, we have
V ≤ E + 1, so each iteration of the while loop takes O(E) time.

Each iteration reduces the number of components of F by at least a factor of two—the worst case
occurs when the components coalesce in pairs. Since F initially has V components, the while loop
iterates at most O(log V ) times. Thus, the overall running time of Borůvka’s algorithm is O(E log V).

Despite its relatively obscure origin, early algorithms researchers were aware of Borůvka’s algorithm,
but dismissed it as being “too complicated”! As a result, despite its simplicity and efficiency, Borůvka’s
algorithm is rarely mentioned in algorithms and data structures textbooks. On the other hand, Borůvka’s
algorithm has several distinct advantages over other classical MST algorithms.

• Borůvka’s algorithm often runs faster than the O(E log V ) worst-case running time. In arbitrary
graphs, the number of components in F can drop by significantly more than a factor of 2 in a single
iteration, reducing the number of iterations below the worst-case dlog2 V e. A slight reformulation
of Borůvka’s algorithm (actually closer to Borůvka’s original presentation) actually runs in O(E)
time for a broad class of interesting graphs, including graphs that can be drawn in the plane
without edge crossings. In contrast, the time analysis for the other two algorithms applies to all
graphs.

• Borůvka’s algorithm allows for significant parallelism; in each iteration, each component of F
can be handled in a separate independent thread. This implicit parallelism allows for even
faster performance on multicore or distributed systems. In contrast, the other two classical MST
algorithms are intrinsically serial.

• There are several more recent minimum-spanning-tree algorithms that are faster even in the worst
case than the classical algorithms described here. All of these faster algorithms are generalizations
of Borůvka’s algorithm.

In short, if you ever need to implement a minimum-spanning-tree algorithm, use Borůvka. On the other
hand, if you want to prove things about minimum spanning trees effectively, you really need to know the
next two algorithms as well.
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25.4 Jarník’s (“Prim’s”) Algorithm

The next oldest minimum spanning tree algorithm was first described by the Czech mathematician Vojtěch
Jarník in a 1929 letter to Borůvka; Jarník published his discovery the following year. The algorithm was
independently rediscovered by Kruskal in 1956, by Prim in 1957, by Loberman and Weinberger in 1957,
and finally by Dijkstra in 1958. Prim, Loberman, Weinberger, and Dijkstra all (eventually) knew of and
even cited Kruskal’s paper, but since Kruskal also described two other minimum-spanning-tree algorithms
in the same paper, this algorithm is usually called “Prim’s algorithm”, or sometimes “the Prim/Dijkstra
algorithm”, even though by 1958 Dijkstra already had another algorithm (inappropriately) named after
him.

In Jarník’s algorithm, the forest F contains only one nontrivial component T ; all the other components
are isolated vertices. Initially, T consists of an arbitrary vertex of the graph. The algorithm repeats the
following step until T spans the whole graph:

JARNÍK: Repeatedly add T ’s safe edge to T .
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Jarník’s algorithm run on the example graph, starting with the bottom vertex.
At each stage, thick edges are in T , an arrow points along T ’s safe edge, and dashed edges are useless.

To implement Jarník’s algorithm, we keep all the edges adjacent to T in a priority queue. When we
pull the minimum-weight edge out of the priority queue, we first check whether both of its endpoints
are in T . If not, we add the edge to T and then add the new neighboring edges to the priority queue. In
other words, Jarník’s algorithm is another instance of the generic graph traversal algorithm we saw last
time, using a priority queue as the “bag”! If we implement the algorithm this way, the algorithm runs in
O(E log E) = O(E log V) time.

25.5 Improving Jarník’s Algorithm?

We can improve Jarník’s algorithm using a more advanced priority queue data structure called a Fibonacci
heap, first described by Michael Fredman and Robert Tarjan in 1984. Fibonacci heaps support the
standard priority queue operations INSERT, EXTRACTMIN, and DECREASEKEY. However, unlike standard
binary heaps, which require O(log n) time for every operation, Fibonacci heaps support INSERT and
DECREASEKEY in constant amortized time. The amortized cost of EXTRACTMIN is still O(log n).
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To apply this faster data structure, we keep vertices in the priority queue instead of edge, where
the key for each vertex v is either the minimum-weight edge between v and the evolving tree T , or
∞ if there is no such edge. We can INSERT all the vertices into the priority queue at the beginning of
the algorithm; then, whenever we add a new edge to T , we may need to decrease the keys of some
neighboring vertices.

To make the description easier, we break the algorithm into two parts. JARNÍK INIT initializes the
priority queue; JARNÍK LOOP is the main algorithm. The input consists of the vertices and edges of the
graph, plus the start vertex s. For each vertex v, we maintain both its key key(v) and the incident edge
edge(v) such that w(edge(v)) = key(v).

JARNÍK(V, E, s):
JARNÍK INIT(V, E, s)
JARNÍK LOOP(V, E, s)

JARNÍK INIT(V, E, s):
for each vertex v ∈ V \ {s}

if (v, s) ∈ E
edge(v)← (v, s)
key(v)← w(v, s)

else
edge(v)← NULL

key(v)←∞
INSERT(v)

JARNÍK LOOP(V, E, s):
T ← ({s},∅)
for i← 1 to |V | − 1

v← EXTRACTMIN

add v and edge(v) to T
for each neighbor u of v

if u /∈ T and key(u)> w(uv)
edge(u)← uv
DECREASEKEY(u, w(uv))

The operations INSERT and EXTRACTMIN are each called O(V ) times once for each vertex except s,
and DECREASEKEY is called O(E) times, at most twice for each edge. Thus, if we use a Fibonacci heap,
the improved algorithm runs in O(E + V log V) time, which is faster than Borůvka’s algorithm unless
E = O(V ).

In practice, however, this improvement is rarely faster than the naive implementation using a binary
heap, unless the graph is extremely large and dense. The Fibonacci heap algorithms are quite complex,
and the hidden constants in both the running time and space are significant—not outrageous, but
certainly bigger than the hidden constant 1 in the O(log n) time bound for binary heap operations.

25.6 Kruskal’s Algorithm

The last minimum spanning tree algorithm I’ll discuss was first described by Kruskal in 1956, in the same
paper where he rediscovered Jarnik’s algorithm. Kruskal was motivated by “a typewritten translation
(of obscure origin)” of Borůvka’s original paper, claiming that Borůvka’s algorithm was “unnecessarily
elaborate”.3 This algorithm was also rediscovered in 1957 by Loberman and Weinberger, but somehow
avoided being renamed after them.

KRUSKAL: Scan all edges in increasing weight order; if an edge is safe, add it to F .

Since we examine the edges in order from lightest to heaviest, any edge we examine is safe if and
only if its endpoints are in different components of the forest F . To prove this, suppose the edge e joins
two components A and B but is not safe. Then there would be a lighter edge e′ with exactly one endpoint

3To be fair, Borůvka’s original paper was unnecessarily elaborate, but in his followup paper, also published in 1927, simplified
his algorithm essentially to its current modern form. Kruskal was apparently unaware of Borůvka’s second paper. Stupid Iron
Curtain.
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Kruskal’s algorithm run on the example graph. Thick edges are in F . Dashed edges are useless.

in A. But this is impossible, because (inductively) any previously examined edge has both endpoints in
the same component of F .

Just as in Borůvka’s algorithm, each component of F has a “leader” node. An edge joins two
components of F if and only if the two endpoints have different leaders. But unlike Borůvka’s algorithm,
we do not recompute leaders from scratch every time we add an edge. Instead, when two components
are joined, the two leaders duke it out in a nationally-televised no-holds-barred steel-cage grudge match.4

One of the two emerges victorious as the leader of the new larger component. More formally, we will
use our earlier algorithms for the UNION-FIND problem, where the vertices are the elements and the
components of F are the sets. Here’s a more formal description of the algorithm:

KRUSKAL(V, E):
sort E by increasing weight
F ← (V,∅)
for each vertex v ∈ V

MAKESET(v)
for i← 1 to |E|

uv← ith lightest edge in E
if FIND(u) 6= FIND(v)

UNION(u, v)
add uv to F

return F

In our case, the sets are components of F , and n = V . Kruskal’s algorithm performs O(E) FIND

operations, two for each edge in the graph, and O(V ) UNION operations, one for each edge in the
minimum spanning tree. Using union-by-rank and path compression allows us to perform each UNION

or FIND in O(α(E, V )) time, where α is the not-quite-constant inverse-Ackerman function. So ignoring
the cost of sorting the edges, the running time of this algorithm is O(Eα(E, V )).

4Live at the Assembly Hall! Only $49.95 on Pay-Per-View!5

5Is Pay-Per-View still a thing?
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We need O(E log E) = O(E log V ) additional time just to sort the edges. Since this is bigger than the
time for the UNION-FIND data structure, the overall running time of Kruskal’s algorithm is O(E log V),
exactly the same as Borůvka’s algorithm, or Jarník’s algorithm with a normal (non-Fibonacci) heap.

Exercises

1. Most classical minimum-spanning-tree algorithms use the notions of “safe” and “useless” edges
described in the lecture notes, but there is an alternate formulation. Let G be a weighted undirected
graph, where the edge weights are distinct. We say that an edge e is dangerous if it is the longest
edge in some cycle in G, and useful if it does not lie in any cycle in G.

(a) Prove that the minimum spanning tree of G contains every useful edge.

(b) Prove that the minimum spanning tree of G does not contain any dangerous edge.

(c) Describe and analyze an efficient implementation of the “anti-Kruskal” MST algorithm:
Examine the edges of G in decreasing order; if an edge is dangerous, remove it from G. [Hint:
It won’t be as fast as Kruskal’s algorithm.]

2. Let G = (V, E) be an arbitrary connected graph with weighted edges.

(a) Prove that for any partition of the vertices V into two disjoint subsets, the minimum spanning
tree of G includes the minimum-weight edge with one endpoint in each subset.

(b) Prove that for any cycle in G, the minimum spanning tree of G excludes the maximum-weight
edge in that cycle.

(c) Prove or disprove: The minimum spanning tree of G includes the minimum-weight edge in
every cycle in G.

3. Throughout this lecture note, we assumed that no two edges in the input graph have equal weights,
which implies that the minimum spanning tree is unique. In fact, a weaker condition on the edge
weights implies MST uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even though
two edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if and only if the
following conditions hold:

• For any partition of the vertices of G into two subsets, the minimum-weight edge with
one endpoint in each subset is unique.

• The maximum-weight edge in any cycle of G is unique.

(c) Describe and analyze an algorithm to determine whether or not a graph has a unique minimum
spanning tree.

4. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance between s
and t is the minimum bottleneck length of any path from s to t. (If there are no paths from s to t,
the bottleneck distance between s and t is∞.)

Describe an algorithm to compute the bottleneck distance between every pair of vertices in an
arbitrary undirected weighted graph. Assume that no two edges have the same weight.
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The bottleneck distance between s and t is 5.

5. (a) Describe and analyze an algorithm to compute the maximum-weight spanning tree of a given
edge-weighted graph.

(b) A feedback edge set of an undirected graph G is a subset F of the edges such that every cycle in
G contains at least one edge in F . In other words, removing every edge in F makes the graph
G acyclic. Describe and analyze a fast algorithm to compute the minimum weight feedback
edge set of of a given edge-weighted graph.

6. Suppose we are given both an undirected graph G with weighted edges and a minimum spanning
tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T and e 6∈ T
separately.]

7. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a given
graph G, that is, the spanning tree of G with smallest total weight except for the minimum
spanning tree.

?(b) Describe and analyze an efficient algorithm to compute, given a weighted undirected graph G
and an integer k, the k spanning trees of G with smallest weight.

8. We say that a graph G = (V, E) is dense if E = Θ(V 2). Describe a modification of Jarník’s minimum-
spanning tree algorithm that runs in O(V 2) time (independent of E) when the input graph is dense,
using only simple data structures (and in particular, without using a Fibonacci heap).

9. (a) Prove that the minimum spanning tree of a graph is also a spanning tree whose maximum-
weight edge is minimal.

?(b) Describe an algorithm to compute a spanning tree whose maximum-weight edge is minimal,
in O(V + E) time. [Hint: Start by computing the median of the edge weights.]
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10. Consider the following variant of Borůvka’s algorithm. Instead of counting and labeling components
of F to find safe edges, we use a standard disjoint set data structure. Each component of F is
represented by an up-tree; each vertex v stores a pointer parent(v) to its parent in the up-tree
containing v. Each leader vertex v̄ also maintains an edge safe(v̄), which is (eventually) the lightest
edge with one endpoint in v̄’s component of F .

BORŮVKA(V, E):
F =∅
for each vertex v ∈ V

parent(v)← v
while FINDSAFEEDGES(V, E)

ADDSAFEEDGES(V, E, F)
return F

FINDSAFEEDGES(V, E):
for each vertex v ∈ V

safe(v)← NULL

found← FALSE

for each edge uv ∈ E
ū← FIND(u); v̄← FIND(v)
if ū 6= v̄

if w(uv)< w(safe(ū))
safe(ū)← uv

if w(uv)< w(safe(v̄))
safe(v̄)← uv

found← TRUE

return done

ADDSAFEEDGES(V, E, F):
for each vertex v ∈ V

if safe(v) 6= NULL

x y ← safe(v)
if FIND(x) 6= FIND(y)

UNION(x , y)
add x y to F

Prove that if FIND uses path compression, then each call to FINDSAFEEDGES and ADDSAFEEDGES

requires only O(V + E) time. [Hint: It doesn’t matter how UNION is implemented! What is the
depth of the up-trees when FINDSAFEEDGES ends?]

11. Minimum-spanning tree algorithms are often formulated using an operation called edge contraction.
To contract the edge uv, we insert a new node, redirect any edge incident to u or v (except uv) to
this new node, and then delete u and v. After contraction, there may be multiple parallel edges
between the new node and other nodes in the graph; we remove all but the lightest edge between
any two nodes.
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Contracting an edge and removing redundant parallel edges.

The three classical minimum-spanning tree algorithms can be expressed cleanly in terms of
contraction as follows. All three algorithms start by making a clean copy G′ of the input graph G
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and then repeatedly contract safe edges in G; the minimum spanning tree consists of the contracted
edges.

• BORŮVKA: Mark the lightest edge leaving each vertex, contract all marked edges, and recurse.
• JARNÍK: Repeatedly contract the lightest edge incident to some fixed root vertex.
• KRUSKAL: Repeatedly contract the lightest edge in the graph.

(a) Describe an algorithm to execute a single pass of Borůvka’s contraction algorithm in O(V + E)
time. The input graph is represented in an adjacency list.

(b) Consider an algorithm that first performs k passes of Borůvka’s contraction algorithm, and
then runs Jarník’s algorithm (with a Fibonacci heap) on the resulting contracted graph.

i. What is the running time of this hybrid algorithm, as a function of V , E, and k?
ii. For which value of k is this running time minimized? What is the resulting running time?

(c) Call a family of graphs nice if it has the following properties:

• A nice graph with n vertices has only O(n) edges.
• Contracting an edge of a nice graph yields another nice graph.

For example, graphs that can be drawn in the plane without crossing edges are nice; Euler’s
formula implies that any planar graph with n vertices has at most 3n− 6 edges.
Prove that Borüvka’s contraction algorithm computes the minimum spanning tree of any nice
n-vertex graph in O(n) time.
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