Algorithms Lecture 7: Backtracking [Fa’14]

To resolve the question by a careful enumeration of solutions via trial and error,
continued Gauss, would take only an hour or two. Apparently such inelegant work
held little attraction for Gauss, for he does not seem to have carried it out, despite
outlining in detail how to go about it.

— Paul Campbell, “Gauss and the Eight Queens Problem:
A Study in Miniature of the Propagation of Historical Error” (1977)

| dropped my dinner, and ran back to the laboratory. There, in my excitement,
| tasted the contents of every beaker and evaporating dish on the table. Luckily for
me, none contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

7 Backtracking

In this lecture, I want to describe another recursive algorithm strategy called backtracking. A back-
tracking algorithm tries to build a solution to a computational problem incrementally. Whenever the
algorithm needs to decide between multiple alternatives to the next component of the solution, it simply
tries all possible options recursively.

7.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed by German
chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the standard 8 x 8
board and by Francois-Joseph Eustache Lionnet in 1869 for the more general n x n board. The problem
is to place n queens on an n x n chessboard, so that no two queens can attack each other. For readers not
familiar with the rules of chess, this means that no two queens are in the same row, column, or diagonal.

Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row. So we
will represent our possible solutions using an array Q[1..n], where Q[i] indicates which square in row i
contains a queen, or 0 if no queen has yet been placed in row i. To find a solution, we put queens on the
board row by row, starting at the top. A partial solution is an array Q[1..n] whose first r — 1 entries are
positive and whose last n —r + 1 entries are all zeros, for some integer r.

The following recursive algorithm, essentially due to Gauss (who called it “methodical groping”),
recursively enumerates all complete n-queens solutions that are consistent with a given partial solution.
The input parameter r is the first empty row. Thus, to compute all n-queens solutions with no restrictions,
we would call RECURSIVENQUEENS(Q[1..n],1).

RECURSIVENQUEENS(Q[1..n],r):
ifr=n+1
print Q
else
forje—1ton
legal «— TRUE
fori —1tor—1
if(Qli]=j)or(Qli]=j+r—dor(Qi]=j—r+i)

legal < FALSE

if legal
Qlrl<j
RECURSIVENQUEENS(Q[1..n],r +1)

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 7: Backtracking [Fa’14]

W

W

W

One solution to the 8 queens problem, represented by the array [4,7,3,8,2,5,1,6]

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated using a
recursion tree. The root of the recursion tree corresponds to the original invocation of the algorithm;
edges in the tree correspond to recursive calls. A path from the root down to any node shows the history
of a partial solution to the n-Queens problem, as queens are added to successive rows. The leaves
correspond to partial solutions that cannot be extended, either because there is already a queen on every
row, or because every position in the next empty row is in the same row, column, or diagonal as an
existing queen. The backtracking algorithm simply performs a depth-first traversal of this tree.

W W W W
/ \ I I / \
W W W W L W
W W W | W W
I I I I
W W W W
W W | W
W W W W
I I
W W
W) |
W W
L W

The complete recursion tree for our algorithm for the 4 queens problem.

Algorithms Lecture 7: Backtracking [Fa’14]

7.2 Game Trees

Consider the following simple two-player game played on an n x n square grid with a border of squares;
let’s call the players Horatio Fahlberg-Remsen and Vera Rebaudi.! Each player has n tokens that they
move across the board from one side to the other. Horatio’s tokens start in the left border, one in each
row, and move to the right; symmetrically, Vera’s tokens start in the top border, one in each column, and
move down. The players alternate turns. In each of his turns, Horatio either moves one of his tokens
one step to the right into an empty square, or jumps one of his tokens over exactly one of Vera’s tokens
into an empty square two steps to the right. However, if no legal moves or jumps are available, Horatio
simply passes. Similarly, Vera either moves or jumps one of her tokens downward in each of her turns,
unless no moves or jumps are possible. The first player to move all their tokens off the edge of the board
wins.

QOO QOO QO® QO® ®
Q © ©) ©) Qe ®©
)) Q® OlC) Qe
)))))
O) ® O)
clo)) €))
Qe QO o 1O QOO O)[C][C)S)
Q))) ©
) ©) Q Q
O)O)€) O)O)€) O, O ©)
©)) Qe © o ® QO
® O) O) O) O)
Q Q Q Q
))))
OO SINC clo)
O) QO O]©) QO®

Vera wins the 3 x 3 game.

We can use a simple backtracking algorithm to determine the best move for each player at each
turn. The state of the game consists of the locations of all the pieces and the player whose turn it is. We
recursively define a game state to be good or bad as follows:

* A game state is bad if all the opposing player’s tokens have reached their goals.
* A game state is good if the current player can move to a state that is bad for the opposing player.

* A configuration is bad if every move leads to a state that is good for the opposing player.

T don’t know what this game is called, or even if 'm remembering the rules correctly. I learned it (or something like it)
from Lenny Pitt, who recommended playing it with sweetener packets at restaurants.
Constantin Fahlberg and Ira Remsen synthesized saccharin for the first time in 1878, while Fahlberg was a postdoc in
Remsen’s lab investigating coal tar derivatives. In 1900, Ovidio Rebaudi published the first chemical analysis of ka’a he’é,
a medicinal plant cultivated by the Guarani for more than 1500 years, now more commonly known as Stevia rebaudiana.

Algorithms Lecture 7: Backtracking [Fa’14]

This recursive definition immediately suggests a recursive backtracking algorithm to determine whether
a given state of the game is good or bad. Moreover, for any good state, the backtracking algorithm finds
a move leading to a bad state for the opposing player. Thus, by induction, any player that finds the game
in a good state on their turn can win the game, even if their opponent plays perfectly; on the other hand,
starting from a bad state, a player can win only if their opponent makes a mistake.

OO
©
©
©
OO OO® OO
€l © ©
© © ©
€ € €
OO CNC [0l OO O, [® OO OO O, [® OO
© Clo o |® Clo) o ©® Q @ Slo] o ® € @
[Sle) © © € © © © © S
© © © © © © © © ©

The first two levels of the game tree.

All computer game players are ultimately based on this simple backtracking strategy. However, since
most games have an enormous number of states, it is not possible to traverse the entire game tree in
practice. Instead, game programs employ other heuristics” to prune the game tree, by ignoring states
that are obviously good or bad (or at least obviously better or worse that other states), and/or by cutting
off the tree at a certain depth (or ply) and using a more efficient heuristic to evaluate the leaves.

7.3 Subset Sum

Let’s consider a more complicated problem, called SUBSETSUM: Given a set X of positive integers and
target integer T, is there a subset of elements in X that add up to T? Notice that there can be more than
one such subset. For example, if X = {8,6,7,5,3,10,9} and T = 15, the answer is TRUE, thanks to the
subsets {8,7} or {7,5,3} or {6,9} or {5,10}. On the other hand, if X = {11,6,5,1,7,13,12} and T = 15,
the answer is FALSE.

There are two trivial cases. If the target value T is zero, then we can immediately return TRUE,
because empty set is a subset of every set X, and the elements of the empty set add up to zero.®> On the
other hand, if T < 0, or if T # 0 but the set X is empty, then we can immediately return FALSE.

For the general case, consider an arbitrary element x € X. (We've already handled the case where X
is empty.) There is a subset of X that sums to T if and only if one of the following statements is true:

e There is a subset of X that includes x and whose sum is T.

e There is a subset of X that excludes x and whose sum is T.

In the first case, there must be a subset of X \ {x} that sums to T — x; in the second case, there must
be a subset of X \ {x} that sums to T. So we can solve SUBSETSUM(X, T) by reducing it to two simpler
instances: SUBSETSUM(X \ {x}, T — x) and SUBSETSUM(X \ {x}, T). Here’s how the resulting recusive
algorithm might look if X is stored in an array.

2A heuristic is an algorithm that doesn’t work.
3There’s no base case like the vacuous base case!

* k Kk

Algorithms Lecture 7: Backtracking [Fa’14]

SUBSETSUM(X[1..n],T):
ifT=0
return TRUE
elseif T<Oorn=0
return FALSE
else
return (SUBSETSUM(X[l .n—1],T) V SUBSETSUM(X[1..n—1],T —X[n]))

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the elements
of the empty subset sum to T, so TRUE is the correct output. Otherwise, if T is negative or the set X is
empty, then no subset of X sums to T, so FALSE is the correct output. Otherwise, if there is a subset that
sums to T, then either it contains X[n] or it doesn’t, and the Recursion Fairy correctly checks for each of
those possibilities. Done.

The running time T(n) clearly satisfies the recurrence T(n) < 2T (n— 1) + O(1), which we can solve
using either recursion trees or annihilators (or just guessing) to obtain the upper bound T(n) = O(2").
In the worst case, the recursion tree for this algorithm is a complete binary tree with depth n.

Here is a similar recursive algorithm that actually constructs a subset of X that sums to T, if one
exists. This algorithm also runs in O(2") time.

CONSTRUCTSUBSET(X[1..n], T):
ifT=0
return &
fT<O0orn=0
return NONE

Y « CONSTRUCTSUBSET(X[1..n—1],T)
if Y # NONE
return Y

Y « CONSTRUCTSUBSET(X[1..n—1], T —X[n])
if Y £ NONE
return Y U {X[n]}

return NONE

7.4 The General Pattern

Find a small choice whose correct answer would reduce the problem size. For each possible answer,
temporarily adopt that choice and recurse. (Don’t try to be clever about which choices to try; just try
them all.) The recursive subproblem is often more general than the original target problem; in each
recursive subproblem, we must consider only solutions that are consistent with the choices we have
already made.

7.5 NFA acceptance

Recall that a nondeterministic finite-state automaton, or NFA, can be described as a directed graph,
whose edges are called states and whose edges have labels drawn from a finite set X called the alphabet.
Every NFA has a designated start state and a subset of accepting states. Any walk in this graph has a label,
which is a string formed by concatenating the labels of the edges in the walk. A string w is accepted by
an NFA if and only if there is a walk from the start state to one of the accepting states whose label is w.

More formally (or at least, more symbolically), an NFA consists of a finite set Q of states, a start state
s € Q, a set of accepting states A C Q, and a transition function §: Q x & — 22. We recursively extend

Algorithms Lecture 7: Backtracking [Fa’14]

the transition function to strings by defining

{q} ifw=e,
6%(q,w) = U 6*(r,x) ifw=ax.
reé(q,a)

The NFA accepts string w if and only if the set 5*(s, w) contains at least one accepting state.

We can express this acceptance criterion more directly as follows. We define a boolean function
Accepts?(q,w), which is TRUE if the NFA would accept string w if we started in state g, and FALSE
otherwise. This function has the following recursive definition:

TRUE ifw=eandqgeA

FALSE ifw=¢andqge€A
Accepts?(q,w) := 1

\/ Accepts?(r,x) if w=ax
reé(q,a)

The NFA accepts w if and only if Accepts?(s, w) = TRUE.

In the magical world of non-determinism, we can imagine that the NFA always magically makes
the right decision when faces with multiple transitions, or perhaps spawns off an independent parallel
thread for each possible choice. Alas, real computers are neither clairvoyant nor (despite the increasing
use of multiple cores) infinitely parallel. To simulate the NFA's behavior directly, we must recursively
explore the consequences of each choice explicitly.

The recursive definition of Accepts? translates directly into the following recursive backtracking
algorithm. Here, the transition function 6 and the accepting states A are represented as global boolean
arrays, where 6[q, a,r] = TRUE if and only if r € §(q,a), and A[q] = TRUE if and only if q € A.

AccerTs?(q,w[1..n]):
ifn=0
return A[q]

for all states r
if 6[q,w[1],r] and ACCEPTS?(r,w[2..1n])
return TRUE

return FALSE

To determine whether the NFA accepts a string w, we call ACCEPTS?(5,A,s,w).
The running time of this algorithm satisfies the recursive inequailty T(n) < O(|Q|) - T(n— 1), which
immediately implies that T(n) = O(|Q|™).

7.6 Longest Increasing Subsequence

Now suppose we are given a sequence of integers, and we want to find the longest subsequence whose
elements are in increasing order. More concretely, the input is an array A[1..n] of integers, and we want
to find the longest sequence of indices 1 < i; < iy < ---i; < n such that A[i;] <A[i;,,] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the kinds of
objects we’re playing with: sequences and subsequences.

A sequence of integers is either empty
or an integer followed by a sequence of integers.

Algorithms Lecture 7: Backtracking [Fa’14]

This definition suggests the following strategy for devising a recursive algorithm. If the input sequence
is empty, there’s nothing to do. Otherwise, we only need to figure out what to do with the first element of
the input sequence; the Recursion Fairy will take care of everything else. We can formalize this strategy
somewhat by giving a recursive definition of subsequence (using array notation to represent sequences):

The only subsequence of the empty sequence is the empty sequence.
A subsequence of A[1..n] is either a subsequence of A[2..n]
or A[1] followed by a subsequence of A[2..n].

We’re not just looking for just any subsequence, but a longest subsequence with the property that
elements are in increasing order. So let’s try to add those two conditions to our definition. (I'll omit the
familiar vacuous base case.)

The LIS of A[1..n] is
either the LIS of A[2..n]

or A[1] followed by the LIS of A[2..n] with elements larger than A[1],
whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining the object ‘longest increasing
subsequence’ in terms of the slightly different object ‘longest increasing subsequence with elements
larger than x’, which we haven’t properly defined yet. Fortunately, this second object has a very similar
recursive definition. (Again, I'm omitting the vacuous base case.)

If A[1] < x, the LIS of A[1..n] with elements larger than x is
the LIS of A[2..n] with elements larger than x.

Otherwise, the LIS of A[1..n] with elements larger than x is
either the LIS of A[2..n] with elements larger than x
or A[1] followed by the LIS of A[2..n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest increasing
subsequence with elements larger than —oo. Rewriting this recursive definition into pseudocode gives
us the following recursive algorithm.

LISBIGGER(prev,A[1..n]):
ifn=0
return 0
else
LIS(A[1..n]): max < LISBIGGER(prev,A[2..n])
return LISBIGGER(—00,A[1..n]) if A[1] > prev
L <« 1+ LISBIGGER(A[1],A[2..n])
if L > max
max « L
return max

The running time of this algorithm satisfies the recurrence T(n) < 2T(n— 1) + O(1), which as usual
implies that T(n) = O(2"). We really shouldn’t be surprised by this running time; in the worst case, the
algorithm examines each of the 2" subsequences of the input array.

¥k K

Algorithms Lecture 7: Backtracking [Fa’14]

The following alternative strategy avoids defining a new object with the “larger than x” constraint.
We still only have to decide whether to include or exclude the first element A[1]. We consider the case
where A[1] is excluded exactly the same way, but to consider the case where A[1] is included, we remove
any elements of A[2..n] that are larger than A[1] before we recurse. This new strategy gives us the
following algorithm:

LIS(A[1..n]):
ifn=0
FILTER(A[1..n], x): return 0
{"o<r_i1<— lton else
ifA[] > x max < LIS(prev,A[2..n])
. . . L «— 1+ LIS(A[1],FILTER(A[2..n|,A| 1
LT AL e j+1 L e 1+ LIS, Furen(A2.) ALLT)
return B[1..j] max L
return max

The FILTER subroutine clearly runs in O(n) time, so the running time of LIS satisfies the recurrence
T(n) < 2T(n—1)+ O(n), which solves to T(n) < O(2") by the annihilator method. This upper bound
pessimistically assumes that FILTER never actually removes any elements; indeed, if the input sequence
is sorted in increasing order, this assumption is correct.

7.7 Optimal Binary Search Trees

Retire this example? It's not a bad example, exactly—certainly it's infinitely better than the
execrable matrix-chain multiplication problem from Aho, Hopcroft, and Ullman—but it's not the best
first example of tree-like backtracking. Minimume-ink triangulation of convex polygons is both more
intuitive (geometry FTW!) and structurally equivalent. CFG parsing and regular expression matching
(really just a special case of parsing) have similar recursive structure, but are a bit more complicated.

Our next example combines recursive backtracking with the divide-and-conquer strategy. Recall that the
running time for a successful search in a binary search tree is proportional to the number of ancestors of
the target node.* As a result, the worst-case search time is proportional to the depth of the tree. Thus, to
minimize the worst-case search time, the height of the tree should be as small as possible; by this metric,
the ideal tree is perfectly balanced.

In many applications of binary search trees, however, it is more important to minimize the total cost
of several searches rather than the worst-case cost of a single search. If x is a more ‘popular’ search
target than y, we can save time by building a tree where the depth of x is smaller than the depth of y,
even if that means increasing the overall depth of the tree. A perfectly balanced tree is not the best
choice if some items are significantly more popular than others. In fact, a totally unbalanced tree of
depth ©(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of keys A[1..n]
and an array of corresponding access frequencies f[1..n]. Our task is to build the binary search tree
that minimizes the total search time, assuming that there will be exactly f[i] searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a good recursive
definition of the function we are trying to optimize! Suppose we are also given a binary search tree T
with n nodes. Let v; denote the node that stores A[i], and let r be the index of the root node. Ignoring

4An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor of v is either the parent
of v or a proper ancestor of the parent of v.

Algorithms Lecture 7: Backtracking [Fa’14]

constant factors, the cost of searching for A[i] is the number of nodes on the path from the root v, to v;.
Thus, the total cost of performing all the binary searches is given by the following expression:

Cost(T, f[1..n]) = Zf[i] - #nodes between v, and v;

i=1

Every search path includes the root node v,.. If i < r, then all other nodes on the search path to v; are in
the left subtree; similarly, if i > r, all other nodes on the search path to v; are in the right subtree. Thus,
we can partition the cost function into three parts as follows:

r—1
Cost(T, f[1..n])= Zf[i] - #nodes between left(v,) and v;
i=1

+ > fIi]
i=1

n
+ Z fli]- #nodes between right(v,) and v;

i=r+1

Now the first and third summations look exactly like our original expression (*) for Cost(T, f[1..n]).
Simple substitution gives us our recursive definition for Cost:

Cost(T, f[1..n]) = Cost(left(T), f[1..r—1]) + Zf[i] + Cost(right(T), f[r+1..n])

i=1

The base case for this recurrence is, as usual, n = 0; the cost of performing no searches in the empty tree
is zero.

Now our task is to compute the tree T, that minimizes this cost function. Suppose we somehow
magically knew that the root of T,y is v,. Then the recursive definition of Cost(T, f) immediately
implies that the left subtree left(T,,.) must be the optimal search tree for the keys A[1..r —1] and access
frequencies f[1..r —1]. Similarly, the right subtree right(T,,.) must be the optimal search tree for the
keys A[r +1..n] and access frequencies f[r + 1..n]. Once we choose the correct key to store at the
root, the Recursion Fairy automatically constructs the rest of the optimal tree. More formally, let
OptCost(f[1..n]) denote the total cost of the optimal search tree for the given frequency counts. We
immediately have the following recursive definition.

OptCost(f[1..n]) = 1r<nin {OptCost(f[l ~r—1]) + Zf[i] + OptCost(f[r+1.. n])}
<r<n)

Again, the base case is OptCost(f[1..0]) = 0; the best way to organize no keys, which we will plan to
search zero times, is by storing them in the empty tree!

This recursive definition can be translated mechanically into a recursive algorithm, whose running
time T(n) satisfies the recurrence

T(n)=0(m)+ Y (T(k—1)+T(n—k)).

k=1

The ©(n) term comes from computing the total number of searches Z?:l flil.

9

1 8. 8. ¢

Algorithms Lecture 7: Backtracking [Fa’14]

Yeah, that’s one ugly recurrence, but it’s actually easier to solve than it looks. To transform it into a
more familiar form, we regroup and collect identical terms, subtract the recurrence for T(n— 1) to get
rid of the summation, and then regroup again.

n—1
T(n)=0(n)+2 Y T(k)

k=0

n—2
T(n—1)=06(n—1) +2Z T(k)
k=0
T(n)—T(n—1) = (1) +2T(n—1)
T(n) =3T(n—1)+6(1)

The solution T (n) = ©(3") now follows from the annihilator method.
Let me emphasize that this recursive algorithm does not examine all possible binary search trees.
The number of binary search trees with n nodes satisfies the recurrence

n—1

N(n) =Y (N(r—1)-N(n—r)),

r=1

which has the closed-from solution N(n) = ©(4"/4/n). Our algorithm saves considerable time by
searching independently for the optimal left and right subtrees. A full enumeration of binary search trees

would consider all possible pairings of left and right subtrees; hence the product in the recurrence for
N(n).

7.8 CFG Parsing

Our final example is the parsing problem for context-free languages. Given a string w and a context-free
grammar G, does w belong to the language generated by G? Recall that a context-free grammar over
the alphabet X consists of a finite set I' of non-terminals (disjoint from X) and a finite set of production
rules of the form A — w, where A is a nonterminal and w is a string over X UT.

Real-world applications of parsing normally require more information than just a single bit. For
example, compilers require parsers that output a parse tree of the input code; some natural language
applications require the number of distinct parse trees for a given string; others assign probabilities to
the production rules and then ask for the most likely parse tree for a given string. However, these more
general problems can be solved using relatively straightforward generalizations of the following decision
algorithm.

Backtracking recurrence behind CYK

Exercises

1. (a) LetA[1..m] and B[1..n] be two arbitrary arrays. A common subsequence of A and B is both a
subsequence of A and a subsequence of B. Give a simple recursive definition for the function
lcs(A, B), which gives the length of the longest common subsequence of A and B.

(b) Let A[1..m] and B[1..n] be two arbitrary arrays. A common supersequence of A and B is
another sequence that contains both A and B as subsequences. Give a simple recursive defini-
tion for the function scs(A, B), which gives the length of the shortest common supersequence
of A and B.

10

Algorithms Lecture 7: Backtracking [Fa’14]

(c) Call a sequence X[1..n] oscillating if X[i] < X[i + 1] for all even i, and X[i] > X[i + 1] for
all odd i. Give a simple recursive definition for the function los(A), which gives the length of
the longest oscillating subsequence of an arbitrary array A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length of the shortest
oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X[1..n] accelerating if 2-X[i] < X[i— 1]+ X[i + 1] for all i. Give a simple

recursive definition for the function Ixs(A), which gives the length of the longest accelerating
subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next two lecture notes!

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Backtracking
	n Queens
	Game Trees
	Subset Sum
	The General Pattern
	NFA acceptance
	Longest Increasing Subsequence
	Optimal Binary Search Trees
	CFG Parsing

