
Algorithms Lecture 2: Regular Languages [Fa’14]

Caveat lector: This is the first edition of this lecture note. Please send bug reports and suggestions
to jeffe@illinois.edu.

But the Lord came down to see the city and the tower the people were building. The Lord said, “If
as one people speaking the same language they have begun to do this, then nothing they plan to
do will be impossible for them. Come, let us go down and confuse their language so they will not
understand each other.”

— Genesis 11:6–7 (New International Version)

Imagine a piano keyboard, eh, 88 keys, only 88 and yet, and yet, hundreds of new melodies, new
tunes, new harmonies are being composed upon hundreds of different keyboards every day in
Dorset alone. Our language, tiger, our language: hundreds of thousands of available words, frillions
of legitimate new ideas, so that I can say the following sentence and be utterly sure that nobody
has ever said it before in the history of human communication: “Hold the newsreader’s nose
squarely, waiter, or friendly milk will countermand my trousers.” Perfectly ordinary words,
but never before put in that precise order. A unique child delivered of a unique mother.

— Stephen Fry, A Bit of Fry and Laurie, Series 1, Episode 3 (1989)

2 Regular Languages

2.1 Definitions

A formal language (or just a language) is a set of strings over some finite alphabet Σ, or equivalently,
an arbitrary subset of Σ∗. For example, each of the following sets is a language:

• The empty set ∅.1

• The set {ε}.

• The set {0,1}∗.

• The set {THE,OXFORD,ENGLISH,DICTIONARY}.

• The set of all subsequences of THE�OXFORD�ENGLISH�DICTIONARY.

• The set of all words in The Oxford English Dictionary.

• The set of all strings in {0,1}∗ with an odd number of 1s.

• The set of all strings in {0,1}∗ that represent a prime number in base 13.

• The set of all sequences of turns that solve the Rubik’s cube (starting in some fixed configuration)

• The set of all python programs that print “Hello World!”

As a notational convention, I will always use italic upper-case letters (usually L, but also A, B, C , and so
on) to represent languages.

Formal languages are not “languages” in the same sense that English, Klingon, and Python are
“languages”. Strings in a formal language do not necessarily carry any “meaning”, nor are they necessarily
assembled into larger units (“sentences” or “paragraphs” or “packages”) according to some “grammar”.

It is very important to distinguish between three “empty” objects. Many beginning students have
trouble keeping these straight.

1The empty set symbol ∅ derives from the Norwegian letter Ø, pronounced like a sound of disgust or a German ö, and not
from the Greek letter φ. Calling the empty set “fie” or “fee” makes the baby Jesus cry.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 2: Regular Languages [Fa’14]

• ∅ is the empty language, which is a set containing zero strings. ∅ is not a string.

• {ε} is a language containing exactly one string, which has length zero. {ε} is not empty, and it is
not a string.

• ε is the empty string, which is a sequence of length zero. ε is not a language.

2.2 Building Languages

Languages can be combined and manipulated just like any other sets. Thus, if A and B are languages
over Σ, then their union A∪ B, intersection A∩ B, difference A\ B, and symmetric difference A⊕ B are
also languages over Σ, as is the complement A := Σ∗ \ A. However, there are two more useful operators
that are specific to sets of strings.

The concatenation of two languages A and B, again denoted A • B or just AB, is the set of all strings
obtained by concatenating an arbitrary string in A with an arbitrary string in B:

A• B := {x y | x ∈ A and y ∈ B}.

For example, if A= {HOCUS,ABRACA} and B = {POCUS,DABRA}, then A• B = {HOCUSPOCUS,ABRACAPOCUS,
HOCUSDABRA,ABRACADABRA}. In particular, for every language A, we have

∅ • A= A•∅=∅ and {ε} • A= A• {ε}= A.

The Kleene closure or Kleene star2 of a language L, denoted L∗, is the set of all strings obtained by con-
catenating a sequence of zero or more strings from L. For example, {0,11}∗ = {ε,0,00,11,000,011,110,
0000,0011,0110,1100,1111,00000,00011,00110, . . . ,000111100110111111, . . .}. More formally, L∗ is
defined recursively as the set of all strings w such that either

• w= ε, or

• w= x y , for some strings x ∈ L and y ∈ L∗.

This definition immediately implies that

∅∗ = {ε}∗ = {ε}.

For any other language L, the Kleene closure L∗ is infinite and contains arbitrarily long (but finite!)
strings. Equivalently, L∗ can also be defined as the smallest superset of L that contains the empty string ε
and is closed under concatenation (hence “closure”). The set of all strings Σ∗ is, just as the notation
suggests, the Kleene closure of the alphabet Σ (where each symbol is viewed as a string of length 1).

A useful variant of the Kleene closure operator is the Kleene plus, defined as L+ := L • L∗. Thus, L+

is the set of all strings obtained by concatenating a sequence of one or more strings from L.

2.3 Regular Languages and Regular Expressions

A language L is regular if and only if it satisfies one of the following (recursive) conditions:

• L is empty;

• L contains a single string (which could be the empty string ε);

• L is the union of two regular languages;

2after Stephen Kleene, who pronounced his last name “clay-knee”, not “clean” or “cleanie” or “claynuh” or “dimaggio”.

2

Algorithms Lecture 2: Regular Languages [Fa’14]

• L is the concatenation of two regular languages; or

• L is the Kleene closure of a regular language.

Regular languages are normally described using a slightly more compact representation called
regular expressions, which omit braces around one-string sets, use + to represent union instead of ∪,
and juxtapose subexpressions to represent concatenation instead of using an explicit operator •. By
convention, in the absence of parentheses, the ∗ operator has highest precedence, followed by the
(implicit) concatenation operator, followed by +. Thus, for example, the regular expression 10∗ is
shorthand for {1} • {0}∗. As a larger example, the regular expression

0+ 0∗1(10∗1+ 01∗0)∗10∗

represents the language

{0} ∪
�

{0}∗ • {1} •
�

({1} • {0}∗ • {1})∪ ({0} • {1}∗ • {0})
�∗

• {1} • {0}∗
�

.

Here are a few more examples of regular expressions and the languages they represent.

• 0∗ — the set of all strings of 0s, including the empty string.

• 00000∗ — the set of all strings consisting of at least four 0s.

• (00000)∗ — the set of all strings of 0s whose length is a multiple of 5.

• (ε + 1)(01)∗(ε + 0)— the set of all strings of alternating 0s and 1s, or equivalently, the set of all
binary strings that do not contain the substrings 00 or 11.

• ((ε + 0+ 00+ 000)1)∗(ε + 0+ 00+ 000) — the set of all binary strings that do not contain the
substring 0000.

• ((0+ 1)(0+ 1))∗ — the set of all binary strings whose length is even.

• 1∗(01∗01∗)∗ — the set of all binary strings with an even number of 0s.

• 0+1(0+1)∗00 — the set of all non-negative binary numerals divisible by 4 and with no redundant
leading 0s.

• 0+ 0∗1(10∗1+ 01∗0)∗10∗ — the set of all non-negative binary numerals divisible by 3, possibly
with redundant leading 0s.

The last example should not be obvious. It is straightforward, but rather tedious, to prove by induction
that every string in 0+ 0∗1(10∗1+ 01∗0)∗10∗ is the binary representation of a non-negative multiple of 3.
It is similarly straightforward, and similarly tedious, to prove that the binary representation of every
non-negative multiple of 3 matches this regular expression. In a later note, we will see a systematic
method for deriving regular expressions for some languages that avoids (or more accurately, automates)
this tedium.

Most of the time we do not distinguish between regular expressions and the languages they represent,
for the same reason that we do not normally distinguish between the arithmetic expression “2+2” and
the integer 4, or the symbol π and the area of the unit circle. However, we sometimes need to refer to
regular expressions themselves as strings. In those circumstances, we write L(R) to denote the language
represented by the regular expression R. String w matches regular expression R if and only if w ∈ L(R).

3

Algorithms Lecture 2: Regular Languages [Fa’14]

Two regular expressions R and R′ are equivalent if they describe the same language; for example, the
regular expressions (0+ 1)∗ and (1+ 0)∗ are equivalent, because the union operator is commutative.

Almost every regular language can be represented by infinitely many distinct but equivalent regular
expressions, even if we ignore ultimately trivial equivalences like L = (L∅)∗Lε +∅. The following iden-
tities, which we state here without (easy) proofs, are useful for designing, simplifying, or understanding
regular expressions.

Lemma 2.1. The following identities hold for all languages A, B, and C:
(a) ∅A= A∅=∅.
(b) εA= Aε = A.
(c) A+ B = B + A.
(d) (A+ B) + C = A+ (B + C).
(e) (AB)C = A(BC).
(f) A(B + C) = AB + AC .

Lemma 2.2. The following identities hold for every language L:
(a) L∗ = ε + L+ = L∗L∗ = (L + ε)∗ = (L \ ε)∗ = ε + L + L+L+.
(b) L+ = L∗ \ ε = LL∗ = L∗L = L+L∗ = L∗L+ = L + L+L+.
(c) L+ = L∗ if and only if ε ∈ L.

Lemma 2.3 (Arden’s Rule). For any languages A, B, and L such that L = AL + B, we have A∗B ⊆ L.
Moreover, if A does not contain the empty string, then L = AL + B if and only if L = A∗B.

2.4 Things What Ain’t Regular Expressions

Many computing environments and programming languages support patterns called regexen (singular
regex, pluralized like ox) that are considerably more general and powerful than regular expressions.
Regexen include special symbols representing negation, character classes (for example, upper-case letters,
or digits), contiguous ranges of characters, line and word boundaries, limited repetition (as opposed to
the unlimited repetition allowed by ∗), back-references to earlier subexpressions, and even local variables.
Despite its obvious etymology, a regex is not necessarily a regular expression, and it does not necessarily
describe a regular language!3

Another type of pattern that is often confused with regular expression are globs, which are patterns
used in most Unix shells and some scripting languages to represent sets file names. Globs include
symbols for arbitrary single characters (?), single characters from a specified range ([a-z]), arbitrary
substrings (*), and substrings from a specified finite set ({foo,ba{r,z}}). Globs are significantly less
powerful than regular expressions.

2.5 Not Every Language is Regular

You may be tempted to conjecture that all languages are regular, but in fact, the following cardinality
argument almost all languages are not regular. To make the argument concrete, let’s consider languages
over the single-symbol alphabet {�}.

• Every regular expression over the one-symbol alphabet {�} is itself a string over the 7-symbol
alphabet {�,+,(,),*, 3,Ø}. By interpreting these symbols as the digits 1 through 7, we can interpret
any string over this larger alphabet as the base-8 representation of some unique integer. Thus, the
set of all regular expressions over {�} is at most as large as the set of integers, and is therefore
countably infinite. It follows that the set of all regular languages over {�} is also countably infinite.

3However, regexen are not all-powerful, either; see http://stackoverflow.com/a/1732454/775369.

4

http://stackoverflow.com/a/1732454/775369

Algorithms Lecture 2: Regular Languages [Fa’14]

• On the other hand, for any real number 0≤ α < 1, we can define a corresponding language

Lα =
�

�n
�

� α2n mod 1≥ 1/2
	

.

In other words, Lα contains the string �n if and only if the (n+1)th bit in the binary representation
of α is equal to 1. For any distinct real numbers α 6= β , the binary representations of α and β
must differ in some bit, so Lα 6= Lβ . We conclude that the set of all languages over {�} is at least
as large as the set of real numbers between 0 and 1, and is therefore uncountably infinite.

We will see several explicit examples of non-regular languages in future lectures. For example, the set of
all regular expressions over {0,1} is not itself a regular language!

2.6 Parsing Regular Expressions

Most algorithms for regular expressions require them in the form of regular expression trees, rather
than as raw strings. A regular expression tree is one of the following:

• A leaf node labeled ∅.
• A leaf node labeled with a string in Σ∗.
• A node labeled + with two children, each the root of an expression tree.
• A node labeled ∗ with one child, which is the root of an expression tree.
• A node labeled • with two children, each the root of an expression tree.

In other words, a regular expression tree directly encodes a sequence of alternation, concatenation
and Kleene closure operations that defines a regular language. Similarly, when we want to prove
things about regular expressions or regular languages, it is more natural to think of subexpressions as
subtrees rather than as substrings.

0+0∗1(10∗1+01∗0)∗10∗+

0 •

0

* •

1 •

+

* •

1

0

*

•

1 •

0

* 1

•

0 •

1

* 0

Given any regular expression of length n, we can parse it into an equivalent regular expression tree
in O(n) time. Thus, when we see an algorithmic problem that starts “Given a regular expression. . . ”,
we can assume without loss of generality that we’re actually given a regular expression tree.

We’ll see more on this topic later.

ÆÆÆ

Exercises

1. (a) Prove that {ε} • L = L • {ε}= L, for any language L.

(b) Prove that ∅ • L = L •∅=∅, for any language L.

(c) Prove that (A• B) • C = A• (B • C), for all languages A, B, and C .

5

Algorithms Lecture 2: Regular Languages [Fa’14]

(d) Prove that |A• B|= |A| · |B|, for all languages A and B. (The second · is multiplication!)

(e) Prove that L∗ is finite if and only if L =∅ or L = {ε}.
(f) Prove that AB = BC implies A∗B = BC∗ = A∗BC∗, for all languages A, B, and C .

2. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w= ε

xR • a if w= a · x

The reversal LR of any language L is the set of reversals of all strings in L:

LR := {wR | w ∈ L}.

(a) Prove that (AB)R = BRAR for all languages A and B.

(b) Prove that (LR)R = L for every language L.

(c) Prove that (L∗)R = (LR)∗ for every language L.

3. Prove that each of the following regular expressions is equivalent to (0+ 1)∗.

(a) ε + 0(0+ 1)∗ + 1(1+ 0)∗

(b) 0∗ + 0∗1(0+ 1)∗

(c) ((ε + 0)(ε + 1))∗

(d) 0∗(10∗)∗

(e) (1∗0)∗(0∗1)∗

4. For each of the following languages in {0,1}∗, describe an equivalent regular expression. There
are infinitely many correct answers for each language. (This problem will become significantly
simpler after we’ve seen finite-state machines, in the next lecture note.)

(a) Strings that end with the suffix 09 = 000000000.

(b) All strings except 010.

(c) Strings that contain the substring 010.

(d) Strings that contain the subsequence 010.

(e) Strings that do not contain the substring 010.

(f) Strings that do not contain the subsequence 010.

(g) Strings that contain an even number of occurrences of the substring 010.
?(h) Strings that contain an even number of occurrences of the substring 000.

(i) Strings in which every occurrence of the substring 00 appears before every occurrence of the
substring 11.

(j) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ by at
most 1.

6

Algorithms Lecture 2: Regular Languages [Fa’14]

?(k) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ by at
most 2.

?(l) Strings in which the number of 0s and the number of 1s differ by a multiple of 3.
?(m) Strings that contain an even number of 1s and an odd number of 0s.
Æ(n) Strings that represent a number divisible by 5 in binary.

5. Prove that for any regular expression R such that L(R) is nonempty, there is a regular expression
equivalent to R that does not use the empty-set symbol ∅.

6. Prove that if L is a regular language, then LR is also a regular language. [Hint: How do you reverse
a regular expression?]

7. (a) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) is empty.

(b) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) is infinite.

In each problem, assume you are given R as a regular expression tree, not just a raw string.

7

	Regular Languages
	Definitions
	Building Languages
	Regular Languages and Regular Expressions
	Things What Ain’t Regular Expressions
	Not Every Language is Regular
	Parsing Regular Expressions

