
Algorithms Lecture 1: Strings [Fa’14]

Whence it is manifest that if we could find characters or signs appropriate for expressing all our thoughts. . . ,
we could in all subjects—in so far as they are amenable to reasoning—accomplish what is done in Arithmetic
and Geometry. For all inquiries which depend on reasoning would be performed by the transposition
of characters and by a kind of calculus, which would immediately facilitate the discovery of beautiful
results. . . . And if someone would doubt my results, I should say to him: “Let us calculate, Sir,” and thus by
taking to pen and ink, we should soon settle the question.

— Gottfried Wilhelm Leibniz, Preface to the General Science (1677),
translated by Philip Wiener (1951)

I hope the reader sees that the alphabet can be understood by any intelligent being who has any one of
the five senses left him,—by all rational men, that is, excepting the few eyeless deaf persons who have lost
both taste and smell in some complete paralysis. . . . Whales in the sea can telegraph as well as senators
on land, if they will only note the difference between long spoutings and short ones. . . . A tired listener at
church, by properly varying his long yawns and his short ones, may express his opinion of the sermon to
the opposite gallery before the sermon is done.

— Edward Everett Hale, “The Dot and Line Alphabet”, Altlantic Monthy (October 1858)

If indeed, as Hilbert asserted, mathematics is a meaningless game played with meaningless marks on
paper, the only mathematical experience to which we can refer is the making of marks on paper.

— Eric Temple Bell, The Queen of the Sciences (1931)

1 Strings

Throughout this course, we will discuss dozens of algorithms and computational models that manipulate
sequences: one-dimensional arrays, linked lists, blocks of text, walks in graphs, sequences of executed
instructions, and so on. Ultimately the input and output of any algorithm must be representable as
a finite string of symbols—the raw contents of some contiguous portion of the computer’s memory.
Reasoning about computation requires reasoning about strings.

This note lists several formal definitions and formal induction proofs related to strings. These
definitions and proofs are intentionally much more detailed than normally used in practice—most
people’s intuition about strings is fairly accurate—but the extra precision is necessary for any sort of
formal proof. It may be helpful to think of this material as part of the “assembly language” of theoretical
computer science. We normally think about computation at a much higher level of abstraction, but
ultimately every argument must “compile” down to these (and similar) definitions.

1.1 Definitions

Fix an arbitrary finite set Σ called the alphabet; the elements of Σ are called symbols or characters.
As a notational convention, I will always use lower-case letters near the start of the English alphabet
(a, b, c, . . .) as symbol variables, and never as explicit symbols. For explicit symbols, I will always use
fixed-width upper-case letters (A, B, C, . . .), digits (0, 1, 2, . . .), or other symbols (�, $, #, •, . . .) that
are clearly distinguishable from variables.

A string (or word) over Σ is a finite sequence of zero or more symbols from Σ. Formally, a string w
over Σ is defined recursively as either

• the empty string, denoted by the Greek letter ε (epsilon),or

• an ordered pair (a, x), where a is a symbol in Σ and x is a string over Σ.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 1: Strings [Fa’14]

We normally write either a · x or simply ax to denote the ordered pair (a, x). Similarly, we normally
write explicit strings as sequences of symbols instead of nested ordered pairs; for example, STRING is
convenient shorthand for the formal expression (S, (T, (R, (I, (N, (G,ε)))))). As a notational convention,
I will always use lower-case letters near the end of the alphabet (. . . , w, x , y, z) to represent unknown
strings, and SHOUTY�MONOSPACED�TEXT to represent explicit symbols and (non-empty) strings.

The set of all strings over Σ is denoted Σ∗ (pronounced “sigma star”). It is very important to
remember that every element of Σ∗ is a finite string, although Σ∗ itself is an infinite set containing strings
of every possible finite length.

The length |w | of a string w is the number of symbols in w, defined formally as follows:

|w| :=

(

0 if w = ε,
1+ |x | if w = ax .

For example, the string SEVEN has length 5. Although they are formally different objects, we do not
normally distinguish between symbols and strings of length 1.

The concatenation of two strings x and y, denoted either x • y or simply x y , is the unique string
containing the characters of x in order, followed by the characters in y in order. For example, the string
NOWHERE is the concatenation of the strings NOW and HERE; that is, NOW • HERE= NOWHERE. (On the other
hand, HERE • NOW= HERENOW.) Formally, concatenation is defined recusively as follows:

w • z :=

(

z if w = ε
a · (x • z) if w = ax

(Here I’m using a larger dot • to formally distinguish the operator that concatenates two arbitrary strings
from from the operator · that builds a string from a single character and a string.)

When we describe the concatenation of more than two strings, we normally omit all dots and
parentheses, writing wx yz instead of (w • (x • y)) • z, for example. This simplification is justified by
the fact (which we will prove shortly) that • is associative.

1.2 Induction on Strings

Induction is the standard technique for proving statements about recursively defined objects. Hopefully
you are already comfortable proving statements about natural numbers via induction, but induction
actually a far more general technique. Several different variants of induction can be used to prove
statements about more general structures; here I describe the variant that I recommend (and actually
use in practice). This variant follows two primary design considerations:

• The case structure of the proof should mirror the case structure of the recursive definition.
For example, if you are proving something about all strings, your proof should have two cases:
Either w = ε, or w = ax for some symbol a and string x .

• The inductive hypothesis should be as strong as possible. The (strong) inductive hypothesis
for statements about natural numbers is always “Assume there is no counterexample k such that
k < n.” I recommend adopting a similar inductive hypothesis for strings: “Assume there is no
counterexample x such that |x |< |w|.” Then for the case w = ax , we have |x |= |w| − 1< |w| by
definition of |w|, so the inductive hypothesis applies to x .

Thus, string-induction proofs have the following boilerplate structure. Suppose we want to prove that
every string is perfectly cromulent, whatever that means. The white boxes hide additional proof details
that, among other things, depend on the precise definition of “perfectly cromulent”.

2

Algorithms Lecture 1: Strings [Fa’14]

Proof: Let w be an arbitrary string.

Assume, for every string x such that |x |< |w|, that x is perfectly cromulent.

There are two cases to consider.

• Suppose w = ε.

Therefore, w is perfectly cromulent.

• Suppose w = ax for some symbol a and string x .
The induction hypothesis implies that x is perfectly cromulent.

Therefore, w is perfectly cromulent.

In both cases, we conclude that w is perfectly cromulent. �

Here are three canonical examples of this proof structure. When developing proofs in this style,
I strongly recommend first mindlessly writing the green text (the boilerplate) with lots of space for
each case, then filling in the red text (the actual theorem and the induction hypothesis), and only then
starting to actually think.

Lemma 1.1. For every string w, we have w • ε = w.

Proof: Let w be an arbitrary string. Assume that x • ε = x for every string x such that |x |< |w|.
There are two cases to consider:

• Suppose w = ε.

w • ε = ε • ε because w = ε,

= ε by definition of concatenation,

= w because w = ε.

• Suppose w = ax for some symbol a and string x .

w • ε = (a · x) • ε because w = ax ,

= a · (x • ε) by definition of concatenation,

= a · x by the inductive hypothesis,

= w because w = ax .

In both cases, we conclude that w • ε = w. �

Lemma 1.2. Concatenation adds length: |w • x |= |w|+ |x | for all strings w and x .

Proof: Let w and x be arbitrary strings. Assume that |y • x | = |y|+ |x | for every string y such that
|y|< |w|. (Notice that we are using induction only on w, not on x .) There are two cases to consider:

• Suppose w = ε.

|w • x |= |ε • x | because w = ε

= |x | by definition of | |
= |ε|+ |x | |e|= 0 by definition of | |
= |w|+ |x | because w = ε

3

Algorithms Lecture 1: Strings [Fa’14]

• Suppose w = a y for some symbol a and string y .

|w • x |= |a y • x | because w = a y

= |a · (y • x)| by definition of •

= 1+ |y • x | by definition of | |
= 1+ |y|+ |x | by the inductive hypothesis

= |a y|+ |x | by definition of | |
= |w|+ |x | because w = a y

In both cases, we conclude that |w • x |= |w|+ |x |. �

Lemma 1.3. Concatenation is associative: (w • x) • y = w • (x • y) for all strings w, x , and y .

Proof: Let w, x , and y be arbitrary strings. Assume that (z • x)• y = w • (x • y) for every string z such
that |z|< |w|. (Again, we are using induction only on w.) There are two cases to consider.

• Suppose w = ε.

(w • x) • y = (ε • x) • y because w = ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w = ε

• Suppose w = az for some symbol a and some string z.

(w • x) • y = (az • x) • y because w = az

= (a · (z • x)) • y by definition of •

= a · ((z • x) • y) by definition of •

= a · (z • (x • y)) by the inductive hypothesis

= az • (x • y) by definition of •

= w • (x • y) because w = az

In both cases, we conclude that (w • x) • y = w • (x • y). �

This is not the only boilerplate that one can use for induction proofs on strings. For example, we
can modify the inductive case analysis using the following observation: A non-empty string w is either a
single symbol or the concatenation of two non-empty strings, which (by Lemma 1.2) must be shorter
than w. Here is an alternate proof of Lemma 1.3 that uses this alternative recursive structure:

Proof: Let w, x , and y be arbitrary strings. Assume that (z • x)• y = w • (x • y) for every string z such
that |z|< |w|. There are three cases to consider.

• Suppose w = ε.

(w • x) • y = (ε • x) • y because w = ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w = ε

4

Algorithms Lecture 1: Strings [Fa’14]

• Suppose w is equal to some symbol a.

(w • x) • y = (a • x) • y because w = a

= (a · x) • y because a • z = a · z by definition of •

= a · (x • y) by definition of •

= a • (x • y) because a • z = a · z by definition of •

= w • (x • y) because w = a

• Suppose w = uv for some nonempty strings u and v.

(w • x) • y = ((u • v) • x) • y because w = uv

= (u • (v • x)) • y by the inductive hypothesis, because |u|< |w|
= u • ((v • x) • y) by the inductive hypothesis, because |u|< |w|
= u • (v • (x • y)) by the inductive hypothesis, because |v|< |w|
= (u • v) • (x • y) by the inductive hypothesis, because |u|< |w|
= w • (x • y) because w = uv

In both cases, we conclude that (w • x) • y = w • (x • y). �

1.3 Indices, Substrings, and Subsequences

For any string w and any integer 1≤ i ≤ |w|, the expression wi denotes the ith symbol in w, counting
from left to right. More formally, wi is recursively defined as follows:

wi :=

(

a if w = ax and i = 1

x i−1 if w = ax and i > 1

As one might reasonably expect, wi is formally undefined if i < 1 or w = ε, and therefore (by induction)
if i > |w|. The integer i is called the index of wi .

We sometimes write strings as a concatenation of their constituent symbols using this subscript
notation: w = w1w2 · · ·w|w|. While standard, this notation is slightly misleading, since it incorrectly
suggests that the string w contains at least three symbols, when in fact w could be a single symbol or
even the empty string.

In actual code, subscripts are usually expressed using the bracket notation w[i]. Brackets were
introduced as a typographical convention over a hundred years ago because subscripts and superscripts1

were difficult or impossible to type.2 We sometimes write strings as explicit arrays w[1 .. n], with the

1The same bracket notation is also used for bibliographic references, instead of the traditional footnote/endnote superscripts,
for exactly the same reasons.

2A typewriter is an obsolete mechanical device loosely resembling a computer keyboard. Pressing a key on a typewriter
moves a lever (called a “typebar”) that strikes a cloth ribbon full of ink against a piece of paper, leaving the image of a single
character. Many historians believe that the ordering of letters on modern keyboards (QWERTYUIOP) evolved in the late 1800s,
reaching its modern form on the 1874 Sholes & Glidden Type-WriterTM, in part to separate many common letter pairs, to
prevent typebars from jamming against each other; this is also why the keys on most modern keyboards are arranged in a
slanted grid. (The common folk theory that the ordering was deliberately intended to slow down typists doesn’t withstand
careful scrutiny.) A more recent theory suggests that the ordering was influenced by telegraph3 operators, who found older
alphabetic arrangements confusing, in part because of ambiguities in American Morse Code.

5

Algorithms Lecture 1: Strings [Fa’14]

understanding that n = |w|. Again, this notation is potentially misleading; always remember that n
might be zero; the string/array could be empty.

A substring of a string w is another string obtained from w by deleting zero or more symbols from
the beginning and from the end. Formally, a string y is a substring of w if and only if there are strings
x and z such that w = x yz. Extending the array notation for strings, we write w[i .. j] to denote the
substring of w starting at wi and ending at w j . More formally, we define

w[i .. j] :=

(

ε if j < i,

wi ·w[i+ 1 .. j] otherwise.

A proper substring of w is any substring other than w itself. For example, LAUGH is a proper substring
of SLAUGHTER. Whenever y is a (proper) substring of w, we also call w a (proper) superstring of y .

A prefix of w[1 .. n] is any substring of the form w[1 .. j]. Equivalently, a string p is a prefix of
another string w if and only if there is a string x such that px = w. A proper prefix of w is any prefix
except w itself. For example, DIE is a proper prefix of DIET.

Similarly, a suffix of w[1 .. n] is any substring of the form w[i .. n]. Equivalently, a string s is a suffix
of a string w if and only if there is a string x such that xs = w. A proper suffix of w is any suffix except
w itself. For example, YES is a proper suffix of EYES, and HE is both a proper prefix and a proper suffix of
HEADACHE.

A subsequence of a string w is a strong obtained by deleting zero or more symbols from anywhere
in w. More formally, z is a subsequence of w if and only if

• z = ε, or

• w = ax for some symbol a and some string x such that z is a subsequence of x .

• w = ax and z = a y for some symbol a and some strings x and y , and y is a subsequence of x .

A proper subsequence of w is any subsequence of w other than w itself. Whenever z is a (proper)
subsequence of w, we also call w a (proper) supersequence of z.

Substrings and subsequences are not the same objects; don’t confuse them! Every substring of w is
also a subsequence of w, but not every subsequence is a substring. For example, METAL is a subsequence,
but not a substring, of MEATBALL. To emphasize the distinction, we sometimes redundantly refer to
substrings of w as contiguous substrings, meaning all their symbols appear together in w.

3A telegraph is an obsolete electromechanical communication device consisting of an electrical circuit with a switch at
one end and an electromagnet at the other. The sending operator would press and release a key, closing and opening the
circuit, originally causing the electromagnet to push a stylus onto a moving paper tape, leaving marks that could be decoded
by the receiving operator. (Operators quickly discovered that they could directly decode the clicking sounds made by the
electromagnet, and so the paper tape became obsolete almost immediately.) The most common scheme within the US to
encode symbols, developed by Alfred Vail and Samuel Morse in 1837, used (mostly) short (·) and long (−) marks—now called
“dots” and “dashes”, or “dits” and “dahs”—separated by gaps of various lengths. American Morse code (as it became known)
was ambiguous; for example, the letter Z and the string SE were both encoded by the sequence · · · · (“di-di-dit, dit”). This
ambiguity has been blamed for the S key’s position on the typewriter keyboard near E and Z.

Vail and Morse were of course not the first people to propose encoding symbols as strings of bits. That honor apparently falls
to Francis Bacon, who devised a five-bit binary encoding of the alphabet (except for the letters J and U) in 1605 as the basis for
a steganographic code—a method or hiding secret message in otherwise normal text.

6

Algorithms Lecture 1: Strings [Fa’14]

Exercises

Most of the following exercises ask for proofs of various claims about strings. For each claim, give a
complete, self-contained, formal proof by inductive definition-chasing, using the boilerplate structure
recommended in Section 1.2. You can use Lemmas 1.1, 1.2, and 1.3, but don’t assume any other facts
about strings that you have not proved. Do not use the words “obvious” or “clearly” or “just”. Most of
these claims are in fact obvious; the real exercise is understanding why they’re obvious.

1. For any symbol a and any string w, let #(a, w) denote the number of occurrences of a in w. For
example, #(A,BANANA) = 3 and #(X,FLIBBERTIGIBBET) = 0.

(a) Give a formal recursive definition of the function #: Σ×Σ∗→ N.

(b) Prove that #(a, x y) = #(a, x) +#(a, y) for every symbol a and all strings x and y. Your
proof must rely on both your answer to part (a) and the formal recursive definition of string
concatenation.

2. Recursively define a set L of strings over the alphabet {0,1} as follows:

• The empty string ε is in L.

• For any two strings x and y in L, the string 0x1y0 is also in L.

• These are the only strings in L.

(a) Prove that the string 000010101010010100 is in L.

(b) Prove by induction that every string in L has exactly twice as many 0s as 1s. (You may
assume the identity #(a, x y) = #(a, x) +#(a, y) for any symbol a and any strings x and y;
see Exercise 1(b).)

(c) Give an example of a string with exactly twice as many 0s as 1s that is not in L.

3. For any string w and any non-negative integer n, let wn denote the string obtained by concatenat-
ing n copies of w; more formally, we define

wn :=

(

ε if n= 0

w • wn−1 otherwise

For example, (BLAH)5 = BLAHBLAHBLAHBLAHBLAH and ε374 = ε.

Prove that wm • wn = wm+n for every string w and all integers non-negative integer n and m.

4. Let w be an arbitrary string, and let n= |w|. Prove each of the following statements.

(a) w has exactly n+ 1 prefixes.

(b) w has exactly n proper suffixes.

(c) w has at most n(n+ 1)/2 distinct substrings.

(d) w has at most 2n− 1 proper subsequences.

7

Algorithms Lecture 1: Strings [Fa’14]

5. The reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w = ε

xR • a if w = a · x

(a) Prove that |wR|= |w| for every string w.

(b) Prove that (wx)R = xRwR for all strings w and x .

(c) Prove that (wR)n = (wn)R for every string w and every integer n≥ 0. (See Exercise 1.)

(d) Prove that (wR)R = w for every string w.

6. Let w be an arbitrary string, and let n = |w|. Prove the following statements for all indices
1≤ i ≤ j ≤ k ≤ n.

(a)
�

�w[i .. j]
�

�= j− i+ 1

(b) w[i .. j] • w[j+ 1 .. k] = w[i .. k]

(c) wR[i .. j] = (w[i′ .. j′])R where i′ = |w|+ 1− j and j′ = |w|+ 1− i.

7. A palindrome is a string that is equal to its reversal.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

(b) Prove that any string p meets your recursive definition of a palindrome if and only if p = pR.

8. A string w ∈ Σ∗ is called a shuffle of two strings x , y ∈ Σ∗ if at least one of the following recursive
conditions is satisfied:

• w = x = y = ε.

• w = aw′ and x = ax ′ and w′ is a shuffle of x ′ and y , for some a ∈ Σ and some w′, x ′ ∈ Σ∗.
• w = aw′ and y = a y ′ and w′ is a shuffle of x and y ′, for some a ∈ Σ and some w′, y ′ ∈ Σ∗.

For example, the string BANANANANASA is a shuffle of the strings BANANA and ANANAS.

(a) Prove that if w is a shuffle of x and y , then |w|= |x |+ |y|.
(b) Prove that if w is a shuffle of x and y , then wR is a shuffle of xR and yR.

9. Consider the following pair of mutually recursive functions on strings:

evens(w) :=

(

ε if w = ε

odds(x) if w = ax
odds(w) :=

(

ε if w = ε

a · evens(x) if w = ax

(a) Prove the following identity for all strings w and x:

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,

evens(w) • odds(x) if |w| is odd.

8

Algorithms Lecture 1: Strings [Fa’14]

(b) State and prove a similar identity for odds(w • x).

10. For any positive integer n, the Fibonacci string Fn is defined recursively as follows:

Fn =

0 if n= 1,

1 if n= 2,

Fn−2 • Fn−1 otherwise.

For example, F6 = 10101101 and F7 = 0110110101101.

(a) Prove that for every integer n≥ 2, the string Fn can also be obtained from Fn−1 by replacing
every occurrence of 0 with 1 and replacing every occurrence of 1 with 01. More formally,
prove that Fn = Finc(Fn−1), where

Finc(w) =

ε if w = ε
1 · Finc(x) if w = 0x

01 • Finc(x) if w = 1x

[Hint: First prove that Finc(x • y) = Finc(x) • Finc(y).]

(b) Prove that 00 and 111 are not substrings of any Fibonacci string Fn.

9

Algorithms Lecture 1: Strings [Fa’14]

11. Prove that the following three properties of strings are in fact identical.

• A string w ∈ {0,1}∗ is balanced if it satisfies one of the following conditions:

– w = ε,
– w = 0x1 for some balanced string x , or
– w = x y for some balanced strings x and y .

• A string w ∈ {0,1}∗ is erasable if it satisfies one of the following conditions:

– w = ε, or
– w = x01y for some strings x and y such that x y is erasable. (The strings x and y are

not necessarily erasable.)

• A string w ∈ {0,1}∗ is conservative if it satisfies both of the following conditions:

– w has an equal number of 0s and 1s, and
– no prefix of w has more 0s than 1s.

(a) Prove that every balanced string is erasable.

(b) Prove that every erasable string is conservative.

(c) Prove that every conservative string is balanced.

[Hint: To develop intuition, it may be helpful to think of 0s as left brackets and 1s as right brackets,
but don’t invoke this intuition in your proofs.]

12. A string w ∈ {0,1}∗ equitable if it has an equal number of 0s and 1s.

(a) Prove that a string w is equitable if and only if it satisfies one of the following conditions:

• w = ε,
• w = 0x1 for some equitable string x ,
• w = 1x0 for some equitable string x , or
• w = x y for some equitable strings x and y .

(b) Prove that a string w is equitable if and only if it satisfies one of the following conditions:

• w = ε,
• w = x01y for some strings x and y such that x y is equitable, or
• w = x10y for some strings x and y such that x y is equitable.

In the last two cases, the individual strings x and y are not necessarily equitable.

(c) Prove that a string w is equitable if and only if it satisfies one of the following conditions:

• w = ε,
• w = x y for some balanced string x and some equitable string y , or
• w = xR y for some for some balanced string x and some equitable string y .

(See the previous exercise for the definition of “balanced”.)

10

	Strings
	Definitions
	Induction on Strings
	Indices, Substrings, and Subsequences

