“CS 374” Lab 11 — October 8 Fall 2014

1. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest
you've been training for your entire life, except for that summer you spent with your uncle in
Alaska hunting wolverines. You've obtained an advance copy of the the list of n songs that the
judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each
integer k, you know that if you dance to the kth song on the schedule, you will be awarded exactly
Score[k] points, but then you will be physically unable to dance for the next Wait[k] songs (that is,
you cannot dance to songs k + 1 through k + Wait[k]). The dancer with the highest total score at
the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can
achieve. The input to your sweet algorithm is the pair of arrays Score[1..n] and Wait[1..n].

2. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping
the characters of X and Y in the same order. For example, the string BANANAANANAS is a shuffle of
the strings BANANA and ANANAS in several different ways.

BANANA BAN,, ,ANA B, AN, A ANA

ANANAS ANA""""NAS AN""ATNATT'S

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of DYNAMIC
and PROGRAMMING:

proPGYRNAMAMMIING G DYproNGARMaAMMICING

Describe and analyze an efficient algorithm to determine, given three strings A[1..m], B[1..n],
and C[1..m+ n], whether C is a shuffle of A and B.

“CS 374”

Lab 11 — October 8 Fall 2014

Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but equally
important things to include in your formulation.

(a)

(b)

Specification. First, give a clear and precise English description of the problem you are
claiming to solve. Don’t describe how to solve the problem at this stage; just describe what the
problem actually is. Otherwise, the reader has no way to know what your recursive algorithm
is supposed to compute.

Solution. Second, give a clear recursive formula or algorithm for the whole problem in terms
of the answers to smaller instances of exactly the same problem. It generally helps to think
in terms of a recursive definition of your inputs and outputs. If you discover that you need
a solution to a similar problem, or a slightly related problem, you're attacking the wrong
problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts with the
base cases of your recurrence and works its way up to the final solution, by considering intermediate
subproblems in the correct order. This stage can be broken down into several smaller, relatively
mechanical steps:

(a)

(b)

(©

(d)

(e)

®

Identify the subproblems. What are all the different ways can your recursive algorithm call
itself, starting with some initial input? For example, the argument to RECFIBO is always an
integer between 0 and n.

Analyze space and running time. The number of possible distinct subproblems determines
the space complexity of your memoized algorithm. To compute the time complexity, add up
the running times of all possible subproblems, ignoring the recursive calls. For example, if
we already know F,;_; and F;_,, we can compute F; in O(1) time, so computing the first n
Fibonacci numbers takes O(n) time.

Choose a data structure to memoize intermediate results. For most problems, each
recursive subproblem can be identified by a few integers, so you can use a multidimensional
array. For some problems, however, a more complicated data structure is required.

Identify dependencies between subproblems. Except for the base cases, every recursive
subproblem depends on other subproblems—which ones? Draw a picture of your data
structure, pick a generic element, and draw arrows from each of the other elements it
depends on. Then formalize your picture.

Find a good evaluation order. Order the subproblems so that each subproblem comes after
the subproblems it depends on. Typically, this means you should consider the base cases
first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence.

