Jeff showed the context-free grammars in class on Tuesday; in each example, the grammar itself is on the left; the explanation for each non-terminal is on the right.

• Properly nested strings of parentheses.

$$S \to \varepsilon \mid S(S)$$
 properly nested parentheses

Here is a different grammar for the same language:

$$S \rightarrow \varepsilon \mid (S) \mid SS$$
 properly nested parentheses

• $\{0^m 1^n \mid m \neq n\}$. This is the set of all binary strings composed of some number of 0s followed by a different number of 1s.

$S \rightarrow A \mid B$	all strings $0^m 1^n$ where $m \neq n$
$A \rightarrow 0A \mid 0C$	all strings $0^m 1^n$ where $m > n$
$B \rightarrow B1 \mid C1$	all strings $0^{m}1^{n}$ where $m < m$
$C \to \varepsilon \mid 0C1$	all strings $0^{n}1^{n}$ for some integer n

Give context-free grammars for each of the following languages. For each grammar, describe *in English* the language for each non-terminal, and in the examples above. As usual, we won't get to all of these in section.

1. Binary palindromes: Strings over {0,1} that are equal to their reversals. For example: 00111100 and 0100010, but not 01100.

```
2. \{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\}
```

3.
$$\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$$

4.
$$\{0,1\}^* \setminus \{0^{2n}1^n \mid n \ge 0\}$$

- 5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]) {} is in this language, but the string ([)] is not, because the left and right delimiters don't match.
- 6. Strings over $\{0,1\}$ where the number of 0s is equal to the number of 1s.
- 7. Strings over $\{0,1\}$ where the number of 0s is *not* equal to the number of 1s.