This is a "core dump" of potential questions for Midterm 1. This should give you a good idea of the *types* of questions that we will ask on the exam—in particular, there *will* be a series of True/False questions—but the actual exam questions may or may not appear in this handout. This list intentionally includes a few questions that are too long or difficult for exam conditions.

Questions from Spring 2014 exams are labeled $(\langle S14 \rangle)$. Questions from homework are labeled $(\langle HW \rangle)$. Questions from labs are labeled $(\langle Lab \rangle)$.

1. **Induction on strings.** Give complete, formal inductive proofs for the following claims. Your proofs must reply on the formal recursive definitions of the relevant string functions, not on intuition. Recall that the concatenation • and length | · | functions are formally defined as follows:

$$w \cdot y := \begin{cases} y & \text{if } w = \varepsilon \\ a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* \end{cases}$$
$$|w| := \begin{cases} 0 & \text{if } w = \varepsilon \\ 1 + |x| & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* \end{cases}$$

• For any string w and any non-negative integer n, let w^n denote the string obtained by concatenating n copies of w; more formally, define

$$w^n := \begin{cases} \varepsilon & \text{if } n = 0 \\ w \cdot w^{n-1} & \text{otherwise} \end{cases}$$

For example, $(BLAH)^5 = BLAHBLAHBLAHBLAH$ and $\varepsilon^{374} = \varepsilon$.

- (a) Prove that $w^m \cdot w^n = w^{m+n}$ for every string w and all non-negative integers n and m.
- (b) Prove that $(w^m)^n = w^{mn}$ for every string w and all non-negative integers n and m.
- (c) Prove that $|w^n| = n|w|$ for every string w and every integer $n \ge 0$.
- The **reversal** w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^{*} \end{cases}$$

- (a) Prove that $(w \cdot x)^R = x^R \cdot w^R$ for all strings w and x. $\langle (lab) \rangle$
- (b) Prove that $(w^R)^R = w$ for every string w. $\langle (lab) \rangle$
- (c) Prove that $|w| = |w^R|$ for every string w.
- (d) Prove that $(w^n)^R = (w^R)^n$ for every string w and every integer $n \ge 0$.
- Consider the following pair of mutually recursive functions:

$$evens(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ odds(x) & \text{if } w = ax \end{cases} \qquad odds(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ a \cdot evens(x) & \text{if } w = ax \end{cases}$$

For example, evens(0001101) = 010 and odds(0001101) = 0011.

(a) Prove the following identity for all strings *w* and *x*:

$$evens(w \cdot x) = \begin{cases} evens(w) \cdot evens(x) & \text{if } |w| \text{ is even,} \\ evens(w) \cdot odds(x) & \text{if } |w| \text{ is odd.} \end{cases}$$

(b) Prove the following identity for all strings *w*:

$$evens(w^R) = \begin{cases} (evens(w))^R & \text{if } |w| \text{ is odd,} \\ (odds(w))^R & \text{if } |w| \text{ is even.} \end{cases}$$

- (c) Prove that |w| = |evens(w)| + |odds(w)| for every string w.
- Consider the following recursive function:

$$scramble(w) := \begin{cases} w & \text{if } |w| \le 1\\ ba \bullet scramble(x) & \text{if } w = abx \text{ for some } a, b \in \Sigma \text{ and } x \in \Sigma^* \end{cases}$$

For example, scramble(0001101) = 0010011.

- (a) Prove that |scramble(w)| = |w| for every string w.
- (b) Prove that scramble(scramble(w)) = w for every string w.

- 2. **Regular expressions.** For each of the following languages over the alphabet {0,1}, give an equivalent regular expression.
 - Every string of length at most 3. [Hint: Don't try to be clever.]
 - Every string except 010. [Hint: Don't try to be clever.]
 - All strings in which every run of consecutive 0s has even length and every run of consecutive 1s has odd length.
 - All strings *not* containing the substring 010.
 - All strings containing at least two 1s and at least one 0.
 - All strings containing either at least two 1s or at least one 0.
 - All strings such that in every prefix, the number of 0s and the number of 1s differ by at most 1.
 - The set of all strings in $\{0, 1\}^*$ whose length is divisible by 3.
 - ((S14)) The set of all strings in 0*1* whose length is divisible by 3.
 - The set of all strings in $\{0,1\}^*$ in which the number of 1s is divisible by 3.

- 3. **Direct DFA construction.** Draw or formally describe a DFA that recognizes each of the following languages. If you draw the DFA you may omit transitions to "dump" states.
 - Every string of length at most 3.
 - Every string except 010.
 - The language {LONG, LUG, LEGO, LEG, LUG, LOG, LINGO}.
 - The language M00* + ME00*W
 - All strings in which every run of consecutive 0s has even length and every run of consecutive 1s has odd length.
 - All strings *not* containing the substring 010.
 - The set of all strings in $\{0, 1\}^*$ whose length is divisible by 3.
 - ((S14)) The set of all strings in 0*1* whose length is divisible by 3.
 - The set of all strings in $\{0, 1\}^*$ in which the number of 1s is divisible by 3.
 - All strings w such that the binary value of w^R is divisible by 5.
 - All strings such that in every prefix, the number of 0s and the number of 1s differ by at most 2.

- 4. Fooling sets. Prove that each of the following languages is not regular.
 - The set of all strings in $\{0,1\}^*$ with more 0s than 1s. ((S14))
 - The set of all strings in $\{0,1\}^*$ with fewer 0s than 1s.
 - The set of all strings in $\{0,1\}^*$ with exactly twice as many 0s as 1s.
 - The set of all strings in $\{0,1\}^*$ with at least twice as many 0s as 1s.
 - $\{0^{n^3} \mid n \ge 0\}$
 - $\{0^{2^n} \mid n \ge 0\} \langle \langle Lab \rangle \rangle$
 - $\{0^{F_n} \mid n \ge 0\}$, where F_n is the nth Fibonacci number, defined recursively as follows:

$$F_n := \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

- $\{x \# y \mid x, y \in \{0, 1\}^* \text{ and } \#(0, x) = \#(1, y)\}$
- $\{xy \mid x \in \{0,1\}^* \text{ and } y = flip(x)\}$, where flip(w) is the string obtained from w by flipping every bit. For example, flip(0001101) = 1110010.
- The language of properly balanced strings of parentheses, described by the context-free grammar $S \to \varepsilon \mid SS \mid (S)$.
- $\{(01)^n(10)^n \mid n \ge 0\}$
- $\{(01)^m(10)^n \mid n \ge m \ge 0\}$
- $\{w \# x \# y \mid w, x, y \in \Sigma^* \text{ and } w, x, y \text{ are not all equal}\}$

- 5. **Regular or not?** For each of the following languages, either prove that the language is regular (by describing a DFA, NFA, or regular expression), or prove that the language is not regular (using a fooling set argument).
 - The set of all strings in {0,1}* in which the substrings 01 and 10 appear the same number of times. (For example, the substrings 01 and 01 each appear three times in the string 1100001101101.)
 - The set of all strings in {0,1}* in which the substrings 00 and 11 appear the same number of times. (For example, the substrings 00 and 11 each appear three times in the string 1100001101101.)
 - The set of all strings in $\{0, 1, (,), *, +, \emptyset, E\}^*$ that are regular expressions over the alphabet $\{0, 1\}$.
 - The set of all strings in {0, 1}* such that in every prefix, the number of 0s is greater than the number of 1s.
 - The set of all strings in {0, 1}* such that in every *non-empty* prefix, the number of 0s is greater than the number of 1s.
 - The language generated by the following context-free grammar:

$$S \to 0A1 \mid \varepsilon$$
$$A \to 1S0 \mid \varepsilon$$

• The language generated by the following context-free grammar:

$$S \rightarrow 0A1$$

$$A \rightarrow 1S0 \mid \varepsilon$$

• The language generated by the following context-free grammar:

$$S \rightarrow 0S1 \mid 1S0 \mid \varepsilon$$

- $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and no substring of } w \text{ is also a substring of } x\}$
- $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and no } non\text{-empty substring of } w \text{ is also a substring of } x\}$
- $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and } every \text{ non-empty substring of } w \text{ is also a substring of } x\}$
- $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a substring of } x\}$
- $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a proper substring of } x\}$
- $\{xy \mid \#(0,x) = \#(1,y) \text{ and } \#(1,x) = \#(0,y)\}$
- $\{xy \mid \#(0,x) = \#(1,y) \text{ or } \#(1,x) = \#(0,y)\}$
- $\{x \# y \mid x, y \in \{0, 1\}^* \text{ and } (\#(0, x) = \#(1, y) \text{ or } \#(1, x) = \#(0, y))\}$

- 6. **Product/subset constructions.** For each of the following languages $L \subseteq \{0, 1\}^*$, formally describe a DFA $M = (Q, \{0, 1\}, s, A, \delta)$ that recognizes L. **Do not attempt to <u>draw</u> the DFA.** Instead, give a complete, precise, and self-contained description of each of the components Q, s, a, and δ . (Don't just describe several smaller DFAs and then say "product construction!")
 - ((S14)) All strings that satisfy *all* of the following conditions:
 - the number of 0s is even
 - the number of 1s is divisible by 3
 - the total length is divisible by 5
 - All strings that satisfy at least one of the following conditions: ...
 - All strings that satisfy exactly one of the following conditions: ...
 - All strings that satisfy exactly two of the following conditions: ...
 - All strings that satisfy an odd number of of the following conditions: ...
 - Other possible conditions:
 - The number of 0s in w is odd.
 - The number of 1s in w is not divisible by 5.
 - The length |w| is divisible by 7.
 - The binary value of w is divisible by 7.
 - The binary value of w^R is not divisible by 7.
 - w contains the substring 00
 - w does not contain the substring 11
 - ww does not contain the substring 101

- 7. **NFA construction.** Let *L* be an arbitrary regular language $\Sigma = \{0, 1\}$. Prove that each of the following languages over $\{0, 1\}$ is regular. "Describe" does not necessarily mean "draw".
 - All strings that satisfy at least one of the following conditions:
 - the number of 0s is even
 - the number of 1s is divisible by 3
 - the total length is divisible by 5.
 - All strings such that in every prefix, the number of 0s and the number of 1s differ by at most 2.
 - All strings such that *in every substring*, the number of 0s and the number of 1s differ by at most 2.
 - PREFIXES(L) := $\{x \mid xy \in L \text{ for some string } x \in \Sigma^*\}$
 - SUFFIXES(L) := $\{y \mid xy \in L \text{ for some string } y \in \Sigma^*\}$
 - ONEINFRONT(L) := { $\mathbf{1}x \mid x \in L$ }
 - MISSINGFIRST(L) := $\{w \in \Sigma^* \mid aw \in L \text{ for some symbol } a \in \Sigma\}$
 - EVENS(L) := { $evens(w) \mid w \in L$ }, where the functions evens and odds are recursively defined as follows:

$$evens(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ odds(x) & \text{if } w = ax \end{cases} \qquad odds(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ a \cdot evens(x) & \text{if } w = ax \end{cases}$$

For example, evens(0001101) = 010 and odds(0001101) = 0011.

- EVENS⁻¹(L) := { $w \mid evens(w) \in L$ }, where the functions *evens* and *odds* are recursively defined as above.
- FLIP(L) := { $flip(w) \mid w \in L$ }, where the function flip is defined recursively as follows:

$$flip(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \mathbf{1} \cdot flip(x) & \text{if } w = \mathbf{0}x \text{ for some string } x \\ \mathbf{0} \cdot flip(x) & \text{if } w = \mathbf{1}x \text{ for some string } x \end{cases}$$

For example, flip(0001101) = 1110010.

• SHUFFLE(L) := { $shuffle(w, x) \mid w, x \in L$ }, where the function shuffle is defined recursively as follows:

$$shuffle(w,x) := \begin{cases} x & \text{if } w = \varepsilon \\ a \cdot shuffle(x,y) & \text{if } w = ay \text{ for some } a \in \Sigma \text{ and some } y \in \Sigma^* \end{cases}$$

For example, $shuffle(0001101, 11111) = 0^{1}0^{1}0^{1}1^{1}1^{1}01$.

• SCRAMBLE(L) := { $scramble(w) \mid w \in L$ }, where the function scramble is defined recursively as follows:

$$scramble(w) := \begin{cases} w & \text{if } |w| \le 1\\ ba \cdot scramble(x) & \text{if } w = abx \text{ for some } a, b \in \Sigma \text{ and } x \in \Sigma^* \end{cases}$$

For example, scramble(0001101) = 0010011.

• STUTTER(L) := $\{stutter(w) \mid w \in L\}$, where the function *stutter* is defined recursively as follows:

$$stutter(w) := \begin{cases} e & \text{if } w = \varepsilon \\ aa \cdot stutter(x) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* \end{cases}$$

For example, stutter(00101) = 0000110011.

- STUTTER⁻¹(L) := { $w \mid stutter(w) \in L$ }, where the function *stutter* is defined recursively as above.
- STUTTERED(L) := $\{w \in L \mid w = stutter(x) \text{ for some } x \in \Sigma^*\}$, where the function stutter is defined recursively as above.

8. **True or False (sanity check).** For each statement below, check "True" if the statement is *always* true and "False" otherwise. Each correct answer is worth 1 point; each incorrect answer is worth -½ point; checking "I don't know" is worth ½ point; and flipping a coin is (on average) worth ½ point.

Read each statement very carefully. Some of these are deliberately subtle.

Definitions

- For all languages L, if L is regular then L can be represented by a regular expression.
- For all languages *L*, if *L* is not regular then *L* cannot be represented by a regular expression.
- For all languages *L*, if *L* can be represented by a regular expression then *L* is regular.
- For all languages L, if L cannot be represented by a regular expression then L is not regular.
- For all languages L, if there is a DFA that accepts every string in L, then L is regular.
- For all languages L, if there is a DFA that accepts every string not in L, then L is not regular.
- For all languages L, if there is a DFA that rejects every string not in L, then L is regular.
- ((S14)) For all languages L, if for every string $w \in L$ there is a DFA that accepts w, then L is regular.
- For all languages L, if for every string $w \notin L$ there is a DFA that rejects w, then L is regular.
- For all languages L, if some DFA recognizes L, then some NFA also accepts L.
- For all languages L, if some NFA recognizes L, then some DFA also accepts L.
- For all languages $L \subseteq \Sigma^*$, if L cannot be described by a regular expression, then some DFA accepts $\Sigma^* \setminus L$.

Closure Properties

- For all regular languages L and L', the language $L \cap L'$ is regular.
- For all regular languages L and L', the language $L \cup L'$ is regular.
- For all regular languages L, the language L^* is regular.
- For all regular languages A, B, and C, the language $(A \cup B) \setminus C$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is not regular.
- For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is not regular.
- (S14) For all languages L and L', the language $L \cap L'$ is regular.
- For all languages L and L', the language $L \cup L'$ is regular.
- For all languages L, the language L^* is regular.
- For all languages L, if L^* is regular, then L is regular.
- For all languages A, B, and C, the language $(A \cup B) \setminus C$ is regular.
- For all languages *L*, if *L* is finite, then *L* is regular.
- For all languages L and L', if L and L' are finite, then $L \cup L'$ is regular.

- For all languages L and L', if L and L' are finite, then $L \cap L'$ is regular.
- For all languages *L*, if *L* contains a finite number of strings, then *L* is regular.
- For all languages $L \subseteq \Sigma^*$, if L contains infinitely many strings in Σ^* , then L is not regular.
- $\langle\!\langle S14 \rangle\!\rangle$ For all languages $L \subseteq \Sigma^*$, if L contains all but a finite number of strings of Σ^* , then L is regular.
- For all languages $L \subseteq \{0, 1\}^*$, if L contains a finite number of strings in 0^* , then L is regular.
- For all languages $L \subseteq \{0, 1\}^*$, if L contains a all but a finite number of strings in 0^* , then L is regular.
- If L and L' are not regular, then $L \cap L'$ is not regular.
- If L and L' are not regular, then $L \cup L'$ is not regular.
- ((S14)) If L is regular and $L \cup L'$ is regular, then L' is regular.
- $\langle \langle S14 \rangle \rangle$ If L is regular and $L \cup L'$ is not regular, then L' is not regular.
- If L is not regular and $L \cup L'$ is regular, then L' is regular.
- If L is regular and $L \cap L'$ is regular, then L' is regular.
- If *L* is regular and $L \cap L'$ is not regular, then L' is not regular.
- ((S14)) If L is regular and L' is finite, then $L \cup L'$ is regular.
- If *L* is regular and *L'* is finite, then $L \cap L'$ is regular.
- If $L \subseteq L'$ and L is regular, then L' is regular.
- If $L \subseteq L'$ and L' is regular, then L is regular.
- If $L \subseteq L'$ and L is not regular, then L' is not regular.
- If $L \subseteq L'$ and L' is not regular, then L is not regular.

Equivalence Classes

- For all languages L, if L is regular, then \equiv_L has finitely many equivalence classes.
- (S14) For all languages L, if L is not regular, then \equiv_L has infinitely many equivalence classes.
- For all languages L, if \equiv_L has finitely many equivalence classes, then L is regular.
- For all languages L, if \equiv_L has infinitely many equivalence classes, then L is not regular.
- For all regular languages L, each equivalence class of \equiv_L is a regular language.
- For all languages L, each equivalence class of \equiv_L is a regular language.

Fooling Sets

- For all languages L, if L has an infinite fooling set, then L is not regular.
- For all languages L, if L has an finite fooling set, then L is regular.
- For all languages L, if L does not have an infinite fooling set, then L is regular.
- For all languages L, if L is not regular, then L has an infinite fooling set.
- For all languages *L*, if *L* is regular, then *L* has no infinite fooling set.
- For all languages L, if L is not regular, then L has no finite fooling set.

Specific Languages (gut check)

- ((S14)) { $0^i 1^j 2^k | i + j k = 374$ } is regular.
- $\{0^i 1^j 2^k \mid i + j k \le 374\}$ is regular.
- $\{0^i 1^j 2^k \mid i + j + k = 374\}$ is regular.
- $\{0^i 1^j 2^k \mid i + j + k > 374\}$ is regular.
- ((S14)) { $0^i 1^j | i < 374 < j$ } is regular.
- $\{0^i 1^j \mid |i-j| < 374\}$ is regular.
- $\langle\langle S14 \rangle\rangle$ { $0^i 1^j \mid (i-j)$ is divisible by 374} is regular.
- $\{0^i 1^j \mid (i+j) \text{ is divisible by 374}\}$ is regular.
- $\{0^{n^2} \mid n \ge 0\}$ is regular.
- $\{0^{37n+4} \mid n \ge 0\}$ is regular.
- $\{0^n 10^n \mid n \ge 0\}$ is regular.
- $\{0^m 10^n \mid m \ge 0 \text{ and } n \ge 0\}$ is regular.
- $\{w \in \{0, 1\}^* \mid |w| \text{ is divisible by 374} \}$ is regular.
- $\{w \in \{0, 1\}^* \mid w \text{ represents a integer divisible by 374 in binary} \}$ is regular.
- $\{w \in \{0, 1\}^* \mid w \text{ represents a integer divisible by 374 in base 473} \}$ is regular.
- $\{w \in \{0, 1\}^* \mid |\#(0, w) \#(1, w)| < 374\}$ is regular.
- $\{w \in \{0,1\}^* \mid |\#(0,x) \#(1,x)| < 374 \text{ for every prefix } x \text{ of } w\}$ is regular.
- $\{w \in \{0,1\}^* \mid |\#(0,x) \#(1,x)| < 374 \text{ for every substring } x \text{ of } w\}$ is regular.
- $\{w_0^{\#(0,w)} \mid w \in \{0,1\}^*\}$ is regular.
- $\left\{ w_0^{\#(0,w) \bmod 374} \mid w \in \{0,1\}^* \right\}$ is regular.

Automata Transformations

- Let M be a DFA over the alphabet Σ . Let M' be identical to M, except that accepting states in M are non-accepting in M' and vice versa. Each string in Σ^* is accepted by exactly one of M and M'.
- Let M be an NFA over the alphabet Σ . Let M' be identical to M, except that accepting states in M are non-accepting in M' and vice versa. Each string in Σ^* is accepted by exactly one of M and M'.
- If a language L is recognized by a DFA with n states, then the complementary language $\Sigma^* \setminus L$ is recognized by a DFA with at most n+1 states.
- If a language L is recognized by an NFA with n states, then the complementary language $\Sigma^* \setminus L$ is recognized by a NFA with at most n+1 states.
- If a language L is recognized by a DFA with n states, then L^* is recognized by a DFA with at most n+1 states.
- If a language L is recognized by an NFA with n states, then L^* is also recognized by a NFA with at most n+1 states.

Language Transformations

- For every regular language L, the language $L^R = \{ w^R \mid w \in L \}$ is also regular. $\langle\!\langle HW \rangle\!\rangle$
- For every language L, if the language $L^R = \{w^R \mid w \in L\}$ is regular, then L is also regular.
- For every regular language L, the language $\{0^{|w|} \mid w \in L\}$ is also regular.
- For every language L, if the language $\{0^{|w|} \mid w \in L\}$ is regular, then L is also regular.