Introduction Stacks

[©] 0000
:

Stacks and Queues

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction Stacks

[0000
:

Input and Output

Your Objectives:
» You already know about these! But...
» We will cover the STL implementations.
» Also linked lists....

Introduction

[©]

Stacks
0000

» Lastin First out — O(1) access to top element only.
P Use in many algorithms. E.g., brace matching, strongest connected components.
» C++ built-in: push(x), pop(), top(), empty).

o// stack
1#include
2#include
s#include
4

sint main

::remplace —= from cplusplus.com/reference/stack

<iostream>
<stack>
<string>

O A

// std::cin, std::cout
// std::stack
// std::string, std::getline(string)

6 std::stack<std::string> mystack;

7 mystack.emplace ("First sentence");

s mystack.emplace ("Second sentence");
9 std::cout << "mystack contains:\n";

1o while (!mystack.empty()) {

1l std::cout << mystack.top() << '\n';
12 mystack.pop();

13}

Introduction Stacks

[©] 0@00
:

Queues

FIFO — used for BFS, scheduling, etc.
STL Queues use a doubly ended underlying implementation by default.

View: back () and top ()

>

>

» This gives you O(1) access to the front and the back.

>

» Insert: push(). If you need explicit access, use deque directly.
>

Do not use pointer arithmetic to access elements!

Introduction Stacks

[©] [e]e] le)
:

Lists

» Thereisa STL 1ist class.
» For most problems you will not want to use this!

» Important exception: if you must do fast insertions in the middle of the list.

Introduction Stacks

[©] [e]e]e])
:

That's it!

» There will be a problem set. Focus on two skills:

» Deciding quickly which data structure is appropriate,
» Using the STL versions of the data structures.

	Introduction
	Objectives

	Stacks

