
Introduction Stacks

Stacks and Queues

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Stacks

Input and Output

Your Objectives:

I You already know about these! But...

I We will cover the STL implementations.

I Also linked lists....

Introduction Stacks

I Last in First out —O(1) access to top element only.

I Use in many algorithms. E.g., brace matching, strongest connected components.

I C++ built-in: push(x), pop(), top(), empty().
0 // stack::emplace -- from cplusplus.com/reference/stack
1 #include <iostream> // std::cin, std::cout
2 #include <stack> // std::stack
3 #include <string> // std::string, std::getline(string)
4

5 int main () {
6 std::stack<std::string> mystack;
7 mystack.emplace ("First sentence");
8 mystack.emplace ("Second sentence");
9 std::cout << "mystack contains:\n";

10 while (!mystack.empty()) {
11 std::cout << mystack.top() << '\n';
12 mystack.pop();
13 }
14 return 0;
15 }

Introduction Stacks

Queues

I FIFO— used for BFS, scheduling, etc.

I STL Queues use a doubly ended underlying implementation by default.

I This gives youO(1) access to the front and the back.

I View: back() and top()
I Insert: push(). If you need explicit access, use deque directly.

I Do not use pointer arithmetic to access elements!

Introduction Stacks

Lists

I There is a STL list class.

I For most problems you will not want to use this!

I Important exception: if you must do fast insertions in the middle of the list.

Introduction Stacks

That’s it!

I There will be a problem set. Focus on two skills:

I Deciding quickly which data structure is appropriate,
I Using the STL versions of the data structures.

	Introduction
	Objectives

	Stacks

