
MP 4 – Evaluation Semantics
CS 477 – Spring 2020

Revision 1.0

Assigned April 24, 2020
Due May 1 2020, 9:00 PM
Extension extend48 hours (penalty 20% of total points possible)

1 Change Log

1.0 Initial Release.

2 Objectives and Background

The purpose of this MP is to test the student’s understanding of

• Natural semantics evaluation, transition semantics evaluation, and program transition sys-
tems

Another purpose of MPs in general is to provide a framework to study for the exam. Several of the
questions on the exam will appear similar to the MP problems.

3 Turn-In Procedure

A skeleton version of the file mp4.thy for this assignment should be found in the assignments/mp4/
subdirectory of your git directory for this course. You should put code answering each of
the problems below in the file mp4.thy. Your completed mp4.thy file should be put in the
assignments/mp4/ subdirectory of your git directory (where it was originally found) and com-
mitted as follows:

git pull

git add mp4.thy

git commit -m "Turning in mp4"

git push

Please read the Instructions for Submitting Assignments in

http://courses.engr.illinois.edu/cs477/mps/index.html

You may find it helpful to refer to Chapters 4, 7 and 12 of Concrete Symantics, which you can find
in you git repository at resources/concrete semantics.pdf.
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4 Syntax and Semantics for a Simple Imperative Programming
Language (SIMP)

4.1 Syntax for SIMP

I have isolated the syntax of SIMP here so that it could be shared between the Hoare Logic theory,
and the operational semantics theories. I have omitted SKIP so that the same language is used for
Hoare Logic, Natural Semantics and Transition Semantics. Note that we used the same “lifted”
shallowly embedded syntax for arithmetic and boolean expressions as we did in the assignment on
Hoare Logic.

datatype ′data command =
AssignCom var-name ′data exp (- ::= - [1000 , 61 ] 61 )
| SeqCom ′data command ′data command (-;;/ - [60 , 61 ] 60 )
| CondCom ′data bool-exp ′data command ′data command

(IF -/ THEN -/ ELSE -/ FI [0 ,0 ,0 ] 60 )
| WhileCom ′data bool-exp ′data command (WHILE -/ DO -/ OD [0 ,0 ] 62 )

Here are a couple of somewhat silly example programs:

IF $ ′′x ′′ [=] k 0 THEN ′′y ′′ ::= k 2 ELSE ′′y ′′ ::= k 3 FI

WHILE $ ′′x ′′ [=] k 0 DO ′′y ′′ ::= k 2 ;; ′′x ′′ ::= $ ′′x ′′ [−] k 1 OD

The first is a program that assigns y the value 2 if x has a value of 0, and assigns y a value of
3 otherwise. The second program checks if x has a value of 0, and if so, assigns y the value 2,
decrements x, and returns to its start again.

4.2 Natural Semantics for SIMP

The rules below give the Natural Semantics for SIMP that were given in class, except that we are
using the shallow embedding of arithmetic and boolean expressions to treat expressions as their
values in a state.

inductive eval (infixl ⇓ 55 )
where
AsgEval :

(x ::= e, m1 ) ⇓ m1 (x := (e m1 ))

| SeqEval :
[[ (C1 , m1 ) ⇓ m2 ; (C2 , m2 ) ⇓ m3 ]]
=⇒
(C1 ;; C2 , m1 ) ⇓ m3

| CondTrueEval :
[[B m1 ; (C1 , m1 )⇓ m2 ]]
=⇒
(IF B THEN C1 ELSE C2 FI , m1 ) ⇓ m2

| CondFalseEval :
[[¬(B m1 ); (C2 , m1 )⇓ m2 ]]
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=⇒
(IF B THEN C1 ELSE C2 FI , m1 ) ⇓ m2

| WhileTrueEval :
[[B m1 ; (C , m1 )⇓ m2 ; (WHILE B DO C OD , m2 ) ⇓ m3 ]]
=⇒

(WHILE B DO C OD , m1 ) ⇓ m3

| WhileFalseEval :
[[¬(B m1 )]]
=⇒
(WHILE B DO C OD , m1 ) ⇓ m1

4.3 Facts rephrasing the Natural Semantics rules

Below are a collection of lemmas, some of which may be useful in the problems later on, that
restate facts about the evaluation of SIMP command in forms that may be more useful for drawing
conclusions about the final state after the evaluation is done. The proofs have been done in Isar
style, as those proofs tend to be more readable.

First we will give a couple of alternate rules for evaluation where all restrictions on the result state
have been moved from the conclusions to equations in the hypotheses. This will facilitate using the
rules in a computional manner that allows tracking of intermediate sates is a readable form.

Following the first two lemmas rephrasing two of the evaluation rules, are a collection of rules
drawing conclusions under the assumption that evaluation occur on a command of a given form.
For all the theorems, except those about the WHILE, the proof begins by a cases analysis of what
form of evaluation rule could have been used the conclude the assumption, and this is driven by
what form of command we are using. In most cases, only one rule can possibly apply. An exception
to this is with the IF command, where we must consider both when the boolean guard is true, and
when it is false.

lemma AsgEvalAlt :
assumes Same: m2 = m1 (x := e(m1 ))
shows (x ::= e, m1 ) ⇓ m2
using Same and AsgEval by simp

lemma WhileFalseEvalAlt :
assumes FalseGuard : ¬(B m1 )

and Same: m2 = m1
shows (WHILE B DO C OD , m1 ) ⇓ m2

using FalseGuard and Same and WhileFalseEval by simp

lemma assign:
assumes Cmd : (x ::= e, m1 ) ⇓ m2
shows m2 = m1 (x := e(m1 ))
using Cmd
proof cases

case AsgEval then show ?thesis by assumption
qed

lemma sequence:
assumes Cmd : (C ;;C ′, m) ⇓ m ′
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shows ∃ m ′′. (C , m) ⇓ m ′′ ∧ (C ′, m ′′) ⇓ m ′

using Cmd
proof cases

case (SeqEval m ′′)
then show ?thesis by auto

qed

lemma ifthenelse:
assumes Cmd : (IF B THEN C ELSE C ′ FI , m) ⇓ m ′

shows ((B m) ∧ (C , m) ⇓ m ′) ∨ ((¬(B m)) ∧ (C ′, m) ⇓ m ′)
using Cmd

proof cases
case CondTrueEval
then
show ?thesis by simp

next
case CondFalseEval
then show ?thesis by simp

qed

Proving facts about the WHILE command generally requires more than just an analysis of what
rule was the last to be used. Because one of the rules has a recursive call to the WHILE, we need
to use the induction principle inherent in the definition of evaluation as a family of inductive rules.
The theorem is named eval.induct and its statement is as follows:

[[x1 ⇓ x2 ;
∧

x e m1 . P (x ::= e, m1 ) (m1 (x := e m1 ));∧
C1 m1 m2 C2 m3 .
[[(C1 , m1 ) ⇓ m2 ; P (C1 , m1 ) m2 ; (C2 , m2 ) ⇓ m3 ; P (C2 , m2 ) m3 ]]
=⇒ P (C1 ;; C2 , m1 ) m3 ;∧
B m1 C1 m2 C2 .
[[B m1 ; (C1 , m1 ) ⇓ m2 ; P (C1 , m1 ) m2 ]]
=⇒ P (IF B THEN C1 ELSE C2 FI , m1 ) m2 ;∧
B m1 C2 m2 C1 .
[[¬ B m1 ; (C2 , m1 ) ⇓ m2 ; P (C2 , m1 ) m2 ]]
=⇒ P (IF B THEN C1 ELSE C2 FI , m1 ) m2 ;∧
B m1 C m2 m3 .
[[B m1 ; (C , m1 ) ⇓ m2 ; P (C , m1 ) m2 ; (WHILE B DO C OD , m2 ) ⇓ m3 ;
P (WHILE B DO C OD , m2 ) m3 ]]

=⇒ P (WHILE B DO C OD , m1 ) m3 ;∧
B m1 C . ¬ B m1 =⇒ P (WHILE B DO C OD , m1 ) m1 ]]

=⇒ P x1 x2

lemma while-done-aux [rule-format ]:
cm ⇓ m =⇒ (λ cm::( ′data command × (string ⇒ ′data)). λ m::string ⇒ ′data.

(∃ C m1 . (cm = (WHILE B DO C OD , m1 ))) −→ (¬ B m)) cm m
by (rule-tac P =

(λ cm::( ′data command × (string ⇒ ′data)). λ m::string ⇒ ′data.
(∃ C m1 . (cm = (WHILE B DO C OD , m1 ))) −→ (¬ B m))

in eval .induct , simp-all , auto)

lemma while-done:
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[[(WHILE B DO C OD , m1 ) ⇓ m2 ]] =⇒ (([¬] B) m2 )
by (simp add : not-b-def , erule while-done-aux , auto)

lemma while-inv-aux [rule-format ]:
[[cm ⇓ m ′]] =⇒

(λ cm. λ m ′::string ⇒ ′data.
((∃B C m. (cm = ((WHILE B DO C OD),m)) ∧ P m ∧

(∀ m1 m2 . (P m1 ∧ B m1 ∧ (C , m1 ) ⇓ m2 ) −→ P m2 )) −→ P m ′)) cm m ′

by (rule-tac P =
(λ cm. λ m ′::string ⇒ ′data.

((∃B C m. (cm = ((WHILE B DO C OD),m)) ∧ P m ∧
(∀ m1 m2 . (P m1 ∧ B m1 ∧ (C , m1 ) ⇓ m2 ) −→ P m2 )) −→ P m ′))
in eval .induct , auto)

lemma while-inv :
[[(WHILE B DO C OD , m) ⇓ m ′; ∀ m1 m2 . P m1 ∧ B m1 ∧ (C , m1 ) ⇓ m2 −→ P m2 ; P m]] =⇒
P m ′

by (erule-tac cm = (WHILE B DO C OD , m) and m ′ = m ′ in while-inv-aux , auto)

lemma while:
[[(WHILE B DO C OD , m) ⇓ m ′; ∀m1 m2 . P m1 ∧ B m1 ∧ (C , m1 ) ⇓ m2 −→ P m2 ; P m ]]

=⇒ (P [∧] ([¬] B)) m ′

by (simp add : and-b-def , rule conjI , erule(2 ) while-inv , erule while-done)

lemma while-unfold :
assumes Cmd : (WHILE B DO C OD , m) ⇓ m ′

shows ((¬ (B m)) ∧ (m ′ = m)) ∨
((B m) ∧ (∃ m ′′. ((C , m) ⇓ m ′′) ∧ (WHILE B DO C OD , m ′′) ⇓ m ′))

using Cmd
proof cases

fix m ′′

assume WUA1 : B m
and WUA2 : (C , m) ⇓ m ′′

and WUA3 : (WHILE B DO C OD , m ′′) ⇓ m ′

case (WhileTrueEval m ′′)
then show ?thesis

by (simp, rule-tac x = m ′′ in exI , simp)
next

assume WUA4 : m ′ = m
and WUA5 : ¬ B m

case WhileFalseEval
from WUA4 and WUA5
show ?thesis by simp

qed

5 Transition Semantics for SIMP

In this subsection, we give the rules for small-step (transition) semantics for SIMP. We do again
is in the Natural Semantics and use the shallow embedding of arithmetic and boolean expression
to equate expressions with their value in the given state, and thus no transition steps are used in
evaluating them.
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As we did in class, we will transition a “configuration” to a “configuration”. Configurations will
either be a pair of a command and a state use to evaluate the command, or just a final state.

Because the language SIMP has no SKIP command, we can not transition a WHILE command to
an IF command because we can not put a SKIP in the ELSE branch. However, because we are
evaluating boolean expressions in zero steps, we can transition in one step to either what would
have been the THEN branch, or we can transition in one step to being done.

datatype ′data configuration =
Intermediate ′data command ′data state (〈/ -, / -/ 〉 [60 , 61 ] 60 )
| Finished ′data state (〈〈/ - / 〉〉 [60 ] 60 )

inductive step (infixl → 55 )
where
AsgStep:

〈x ::= e, m1 〉 → 〈〈m1 (x := (e m1 ))〉〉

| FirstSeqStep:
〈C1 , m1 〉 → 〈C1a, m2 〉
=⇒
〈C1 ;;C2 , m1 〉 → 〈C1a;;C2 , m2 〉

| FirstSeqDone:
〈C1 , m1 〉 → 〈〈m2 〉〉
=⇒
〈C1 ;;C2 , m1 〉 → 〈C2 , m2 〉

| CondTrueStep:
B m1
=⇒
〈IF B THEN C1 ELSE C2 FI , m1 〉 → 〈C1 , m1 〉

| CondFalseStep:
¬(B m1 )
=⇒
〈IF B THEN C1 ELSE C2 FI , m1 〉 → 〈C2 , m1 〉

| WhileTrueStep:
B m1
=⇒
〈WHILE B DO C OD , m1 〉 → 〈C ;; WHILE B DO C OD , m1 〉

| WhileFalseStep:
¬(B m1 )
=⇒
〈WHILE B DO C OD , m1 〉 → 〈〈m1 〉〉

It is somewhat interesting to note that in transition semantics, the only recursion in the rules is in
the rule for sequences. Once you remove steps for evaluation of arithmetic and boolean expressions,
evaluating the pieces of a sequence of commands is the only thing that involves evaluation a sub-
entity.

As we did with Natural Semantics, we will prove a collection of alternate rules fro transition
steps, where all constraints on the resultant configuration have been moved to equations in the
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assumptions. This time, we will need an alternate rule for every type of step.

lemma AsgStepAlt :
assumes Same: conf = 〈〈m1 (x := (e m1 ))〉〉
shows 〈x ::= e, m1 〉 → conf
using Same and AsgStep by simp

lemma FirstSeqStepAlt :
assumes Step: 〈C1 , m1 〉 → 〈C1a, m2 〉

and Same: conf = 〈C1a;;C2 , m2 〉
shows 〈C1 ;;C2 , m1 〉 → conf

using Same and Step and FirstSeqStep by simp

lemma FirstSeqDoneAlt :
assumes Step: 〈C1 , m1 〉 → 〈〈m2 〉〉

and Same: conf = 〈C2 , m2 〉
shows 〈C1 ;;C2 , m1 〉 → conf

using Same and Step and FirstSeqDone by simp

lemma CondTrueStepAlt :
assumes Guard : B m1

and Same: conf = 〈C1 , m1 〉
shows 〈IF B THEN C1 ELSE C2 FI , m1 〉 → conf

using Guard and Same and CondTrueStep by simp

lemma CondFalseStepAlt :
assumes Guard : ¬(B m1 )

and Same: conf = 〈C2 , m1 〉
shows 〈IF B THEN C1 ELSE C2 FI , m1 〉 → conf

using Guard and Same and CondFalseStep by simp

lemma WhileTrueStepAlt :
assumes Guard : B m1

and Same: conf = 〈C ;; WHILE B DO C OD , m1 〉
shows 〈WHILE B DO C OD , m1 〉 → conf

using Guard and Same and WhileTrueStep by simp

lemma WhileFalseStepAlt :
assumes Guard : ¬(B m1 )

and Same: conf = 〈〈m1 〉〉
shows 〈WHILE B DO C OD , m1 〉 → conf

using Guard and Same and WhileFalseStep by simp

6 Examples using Natural and Transition Semantics

In this section we will give examples of evaluating programs by Natural Semantics and Transition
Semantics, and examples of proving results using Natural Semantics similar to what we did for
Hoare Logic. The proofs in this section are all in apply style to make them patterns for what you
will do for your problems.

lemma ex1 :
( ′′x ′′ ::= $ ′′z ′′ [+] k 1 , λ y . if y = ′′z ′′ then 4 else 0 )
⇓
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(λ y . if y = ′′z ′′ then 4 else if y = ′′x ′′ then 5 else 0 )
— We want to use the rule AsgEval, but our resultant state
— is not expressed in the form of an update. We want to prove the theorem
— first using another form for the resultant state and then prove the two
— resultant states equal. We can do this using the theorem
— AsgEvalAlt : m2 = m1 (x := e m1 ) =⇒ (x ::= e, m1 ) ⇓ m2
— instead.

apply (rule AsgEvalAlt)

— And that leaves us with showing the computed resultant state is equal
— to the given one. However, states are functions from variable names to
— values, integers in this case. TO show two functions are equal, we
— will use extensionality to show that they are equal on arbitrary input.
apply (rule ext)
— This leaves us with expanding out lifter express notation and basic
— arithmetic that simp can handle.
by (simp add : plus-e-def rev-app-def k-def )

lemma ex2 :
( ′′x ′′ ::= $ ′′z ′′ [+] k 1 , m1 ) ⇓ m2 =⇒
(m2 ′′x ′′ = (m1 ′′z ′′ + 1 )) ∧ ((y 6= ′′x ′′) −→ m1 y = m2 y)
— We want to begin by drawing a conclusion from the fact that we can evaluate
— an assignment. We want to derive a new assumption from one we currently have
— using the theorem assign. The proof methods drule and
— drule tac allow us to do exactly that.
apply (drule assign)
— The theorem assign replaces the assumption that the assignment
— command evaluates to a state with the relation between the start and end states.
— This together is enough, together with expanding out the lifted operators, for
— simp once again to finish the proof.
by (simp add : plus-e-def rev-app-def k-def )

The proof of ex3 will go muct as that of ex1.

lemma ex3 : 〈 ′′x ′′ ::= $ ′′z ′′ [+] k 1 , (λ y . if y = ′′z ′′ then 4 else 0 )〉 →
〈〈(λ y . if y = ′′z ′′ then 4 else if y = ′′x ′′ then 5 else 0 )〉〉

apply (rule AsgStepAlt)
— We want to show two final configurations are the same. To do that, we
— need to show the underlying states (functions) are the same.
apply simp
— To show the functions are the same, we will use extensionality to show
— they produce the same value on an arbitrary input.
apply (rule ext)
by (simp add : k-def rev-app-def plus-e-def )

Proofs for IF require chaining a few steps of reasoning together.

lemma ex4 :
(IF ($ ′′y ′′ [<] $ ′′z ′′) THEN ( ′′x ′′ ::= $ ′′z ′′ [+] k 1 )
ELSE ( ′′x ′′ ::= $ ′′z ′′ [−] k 1 ) FI ,
(λ y . if y = ′′z ′′ then 4 else 0 ))
⇓
(λ y . if y = ′′z ′′ then 4 else if y = ′′x ′′ then 5 else 0 )
— In our input memory, ”y” has a value of 0 and ”z” has a
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— value of 4, so the boolean guard is true, and we need to use the rule CondTrueEval.
apply (rule CondTrueEval)
apply (simp add : less-b-def rev-app-def )

— From here it is the same proof as in ex1.
apply (rule AsgEvalAlt)
apply (rule ext)
by (simp add : k-def rev-app-def plus-e-def )

lemma ex5 :
[[(IF ($ ′′y ′′ [<] $ ′′z ′′) THEN ( ′′x ′′ ::= $ ′′z ′′ [+] k 1 )

ELSE ( ′′x ′′ ::= $ ′′z ′′ [−] k 1 ) FI , m1 ) ⇓ m2 ; m1 ′′y ′′ < m1 ′′z ′′]] =⇒
m2 ′′x ′′ > m2 ′′z ′′

apply (drule ifthenelse)
apply (simp add : rev-app-def k-def less-b-def plus-e-def )
apply (drule assign)
by simp

lemma ex6 :
〈IF ($ ′′y ′′ [<] $ ′′z ′′) THEN ( ′′x ′′ ::= $ ′′z ′′ [+] k 1 )
ELSE ( ′′x ′′ ::= $ ′′z ′′ [−] k 1 ) FI , (λ y . if y = ′′z ′′ then 4 else 0 )〉
→
〈( ′′x ′′ ::= $ ′′z ′′ [+] k 1 ),(λ y . if y = ′′z ′′ then 4 else 0 )〉
apply (rule CondTrueStepAlt)
apply (simp add : less-b-def rev-app-def )

by simp

In Example ex7a, we do a computation of the results of evaluating a fairly simple (and stupid)
while loop. We repeatedly apply the rule that applies to the topmost structure of the program in
the top goal, and solve the expression constraints as they come up. This way of doing things means
we have to determined the truth of the boolean guard from an increasingly complex expression for
the state.

lemma ex7a:
(WHILE $ ′′i ′′ [<] k 2 DO

( ′′i ′′ ::= $ ′′i ′′ [+] k 2 ;;
′′i ′′ ::= $ ′′i ′′ [−] k 1 )

OD , (λ s. 0 )) ⇓ (λ s. if s = ′′i ′′ then 2 else 0 )
apply (rule WhileTrueEval)

apply (simp add : less-b-def k-def rev-app-def )
apply (rule SeqEval)
apply (rule AsgEval)

apply (rule AsgEval)
apply (rule WhileTrueEval)

apply (simp add : rev-app-def k-def less-b-def plus-e-def minus-e-def )
apply (rule SeqEval)
apply (rule AsgEval)

apply (rule AsgEval)
apply (rule WhileFalseEvalAlt)
apply (simp add : rev-app-def k-def plus-e-def minus-e-def less-b-def )

apply (rule ext)
by (simp add : rev-app-def k-def plus-e-def minus-e-def less-b-def )

As an alternate approach, I will do the same computation, but using the Alt versions of the rules for
assignment, allowing me to compute a “simplified” version of the state after each update through
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theorem proving.

lemma ex7b:
(WHILE $ ′′i ′′ [<] k 2 DO

( ′′i ′′ ::= $ ′′i ′′ [+] k 2 ;;
′′i ′′ ::= $ ′′i ′′ [−] k 1 )

OD , (λ s. 0 )) ⇓ (λ s. if s = ′′i ′′ then 2 else 0 )
apply (rule WhileTrueEval)

apply (simp add : less-b-def k-def rev-app-def )
apply (rule SeqEval)
apply (rule AsgEvalAlt)

apply (simp add : k-def rev-app-def plus-e-def )
apply (rule AsgEvalAlt)

apply (simp add : k-def rev-app-def plus-e-def minus-e-def )
apply (rule WhileTrueEval)

apply (simp add : rev-app-def k-def less-b-def plus-e-def minus-e-def )
apply (rule SeqEval)
apply (rule AsgEvalAlt)
apply (simp add : rev-app-def k-def less-b-def plus-e-def minus-e-def )

apply (rule AsgEvalAlt)
apply (simp add : rev-app-def k-def minus-e-def )
apply (rule WhileFalseEvalAlt)
apply (simp add : rev-app-def k-def less-b-def )

apply (rule ext)
by simp

lemma ex8 :
[[(WHILE $ ′′i ′′ [<] k 2 DO

( ′′i ′′ ::= $ ′′i ′′ [+] k 2 ;;
′′i ′′ ::= $ ′′i ′′ [−] k 1 )

OD , m1 ) ⇓ m2 ;
m1 ′′i ′′ = 0 ]] =⇒ ($ ′′i ′′ [=] k 2 ) m2
— We must find and prove an invariant and prove the result from the
— invariant and the negation of the boolean guard. I choose i ≤ 2.
apply (drule-tac P=($ ′′i ′′ [≤] k 2 ) in while)

apply clarsimp
apply (drule sequence)
apply clarsimp
apply (drule assign)
apply (drule assign)
apply (simp add : rev-app-def k-def less-b-def less-eq-b-def plus-e-def minus-e-def )

apply (simp add : rev-app-def k-def less-eq-b-def )
by (simp add : rev-app-def k-def less-b-def less-eq-b-def eq-b-def and-b-def not-b-def )

7 Problems

The problems below are designed to step you through some of the pieces of reasoning about Natural
Semantics evaluations in Isabelle. You are free to use any and all theorem proving methods in
Isabelle to prove them. You may wish to refer to the definitions and theorems in lifted basic

and lifted predicate logic.

Remove the oops from each problem and put in your own proof.
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1. (5 pts)

lemma problem1 :
( ′′y ′′ ::= $ ′′y ′′ [+] k 1 , (λ s. 1 )) ⇓ (λs. if s = ′′y ′′ then 2 else 1 )

oops

2. (7 pts)

lemma problem2 :
〈 ′′y ′′ ::= $ ′′y ′′ [+] k 1 , (λ s. 1 )〉 → 〈〈(λs. if s = ′′y ′′ then 2 else 1 )〉〉

oops

3. (5 pts)

lemma problem3 :
[[( ′′y ′′ ::= $ ′′y ′′ [+] k 1 , m1 ) ⇓ m2 ]] =⇒ m2 ′′y ′′ > m1 ′′y ′′

oops

4. (10 pts)

lemma problem4 :
(( ′′y ′′ ::= $ ′′y ′′ [+] k 1 ;; ′′x ′′ ::= $ ′′x ′′ [−] k 1 ),

(λs. if s = ′′y ′′ then a else if s = ′′x ′′ then b else c)) ⇓
(λs. if s = ′′y ′′ then a + 1 else if s = ′′x ′′ then b − 1 else c)

oops

5. (8 pts)

lemma problem5 :
〈( ′′y ′′ ::= $ ′′y ′′ [+] k 1 ;; ′′x ′′ ::= $ ′′x ′′ [−] k 1 ),

(λs. if s = ′′y ′′ then a else if s = ′′x ′′ then b else c)〉
→
〈( ′′x ′′ ::= $ ′′x ′′ [−] k 1 ),
(λs. if s = ′′y ′′ then a +1 else if s = ′′x ′′ then b else c)〉
oops

6. (9 pts)

lemma problem6 :
[[(( ′′y ′′ ::= $ ′′y ′′ [+] k 1 ;; ′′x ′′ ::= $ ′′x ′′ [−] k 1 ), m1 ) ⇓ m2 ]] =⇒
m2 ′′x ′′ + m2 ′′y ′′ = m1 ′′x ′′ + m1 ′′y ′′

oops

7. (12 pts)

lemma problem7 :
[[($ ′′y ′′ [=] $ ′′a ′′)m1 ;

((IF $ ′′y ′′ [mod ] (k 2 ) [=] (k 0 ) THEN ( ′′y ′′ ::= $ ′′y ′′)
ELSE ( ′′y ′′ ::= $ ′′y ′′ [+] (k 1 )) FI ), m1 ) ⇓ m2 ]] =⇒

(($ ′′y ′′ [≥] $ ′′a ′′) [∧]
($ ′′y ′′ [≤] ($ ′′a ′′ [+] (k 1 ))) [∧]
($ ′′y ′′ [mod ] (k 2 ) [=] k 0 )) m2
oops
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7.1 Extra Credit

8. (8 pts)

lemma problem8 :
[[($ ′′y ′′ [=] k a [∧] $ ′′x ′′ [=] k b [∧] k b [>] k 0 ) m1 ;

(WHILE $ ′′x ′′ [>] k 0 DO
( ′′y ′′ ::= $ ′′y ′′ [+] k 1 ;;
′′x ′′ ::= $ ′′x ′′ [−] k 1 )

OD , m1 ) ⇓ m2 ]] =⇒ ($ ′′y ′′ [=] k(a + b)) m2
oops
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