
MP 2 – Verifying Basic Operations on
Boolean Expressions

CS 477 – Spring 2018
Revision 1.0

Assigned February 19, 2020
Due February 26, 2020, 9:00 PM
Extension extend 48 hours (penalty 20% of total points possible)

1 Change Log

1.0 Initial Release.

2 Objectives and Background

The purpose of this MP is to test the student’s ability to

• To write recursive programs over datatypes in Isabelle;

• write simple proofs about these recursive programs by induction and equational rewriting.

Another purpose of MPs in general is to provide a framework to study for the exam. Several of the questions
on the exam will appear similar to the MP problems.

3 Turn-In Procedure

The pdf for this assignment (mp1.pdf) and a skeleton version of the file mp2.thy for this assignment should
be found in the assignments/mp2/ subdirectory of your git directory for this course. You should put code
answering each of the problems below in the file mp2.thy. Your completed mp2.thy file should be put in
the assignments/mp2/ subdirectory of your git directory (where it was originally found) and committed as
follows:

git pull

git add mp1.thy

git commit -m "Turning in mp2"

git push

Please read the Instructions for Submitting Assignments in

http://courses.engr.illinois.edu/cs477/mps/index.html

You may find it helpful to read Chapter 2 of Concrete Symantics, which you can find in you git repos-
itory at assignments/resources/concrete semantics.pdf, or alternately as prog-prove in the Isabelle
Documentation sidebar.

4 Boolean Expressions, Evaluation and Substitution

The following is a slightly revised version of the type of boolean expressions presented in class.

1

datatype ′a boolexp =
TRUE
| FALSE
| Atom ′a
| Not ′a boolexp
| And ′a boolexp ′a boolexp
| Or ′a boolexp ′a boolexp
| Implies ′a boolexp ′a boolexp

And the following is an implementation of the Standard Interpretation function defined on page 4 0f
02 prop log model.pdf.

fun boolexp-eval
where

boolexp-eval v TRUE = True
| boolexp-eval v FALSE = False
| boolexp-eval v (Atom x) = v x
| boolexp-eval v (Not b) = (¬ (boolexp-eval v b))
| boolexp-eval v (And a b) =

((boolexp-eval v a) ∧ (boolexp-eval v b))
| boolexp-eval v (Or a b) =

((boolexp-eval v a) ∨ (boolexp-eval v b))
| boolexp-eval v (Implies a b) =

((¬ (boolexp-eval v a))∨ (boolexp-eval v b))

5 Problems

Below you are asked to define substitution and the set of variables occurring in a proposition. You are
additionally asked to prove a few simple properties about these two functions. To prove a theorem, you
should first remove the non-proof oops

1. (7 pts) Define boolexp-subst that, given a propositional atom (x), and two boolexps, creates a third
boolexp that is the result of replacing all occurrences of the propositional atom in the second boolexp
with the first boolexp.

You will likely find it helpful to use something like if x = y then result1 else result2

fun boolexp-subst :: ′a ⇒ ′a boolexp ⇒ ′a boolexp ⇒ ′a boolexp where
boolexp-subst x b TRUE = TRUE

If you have done your work right, the following should give a result of And (Atom ′′b ′′) (Implies (Atom ′′b ′′)
TRUE)

value boolexp-subst ′′a ′′ (Implies (Atom ′′b ′′) TRUE) (And (Atom ′′b ′′) (Atom ′′a ′′))

2. (3 pts) Prove that if you evaluate with a valuation v a boolexp that is the result of substituting all
occurences of a propositional atom x by the proposition TRUE, the result is the same as if you had
evaluated the original boolexp using the valuation λy . if y = x then TRUE else v y

lemma subst-to-eval :
boolexp-eval v (boolexp-subst x TRUE b) =
boolexp-eval (λ y . if y = x then True else v y) b
oops

2

3. (6 pts) Define a function atoms-of-boolexp:: ′a boolexp ⇒ ′a list that returns a list containing exactly the
propositional atoms that occur in the input boolexp. Duplicates are allowed in the list. There is no
required order. The empty list is represented by []. To insert an element x at the front of a list lst use x
lst. To append list l2 onto list l1 use l1 @ l2.

fun atoms-of-boolexp :: ′a boolexp ⇒ ′a list where
atoms-of-boolexp TRUE = []

If your definition in Problem 3 is correct, the following lemma should complete, producing a theorem

lemma test-problem3 :
set (atoms-of-boolexp (Or (Implies (Atom ′′b ′′) TRUE) (And (Atom ′′b ′′) (Atom ′′a ′′)))) =
{ ′′a ′′, ′′b ′′}
oops

4. (3 pts) Prove that if two valuations are the same on the propositional atoms in a boolexp, then they will
give the same result when used to evaluate the boolexp.

lemma same-on-atoms-same-value:
(∀ x . x : set (atoms-of-boolexp b) −→ v1 x = v2 x) −→
(boolexp-eval v1 b = boolexp-eval v2 b)
oops

5. (3 pts) Prove that substituting for an atom that is not in a boolexp yields the same boolexp.

lemma subst-nonexistant-atom:
x /∈ set(atoms-of-boolexp b) −→ (boolexp-subst x b ′ b = b)
oops

3

	Change Log
	Objectives and Background
	Turn-In Procedure
	Boolean Expressions, Evaluation and Substitution
	Problems

