HW 2 - Binary Decision Diagrams

CS 477 - Spring 2020
Revision 1.0
Assigned February 5, 2020
Due February 12, 2020, 9:00 pm
Extension 48 hours (20% penalty)

1 Change Log

1.0 Initial Release.

2 Objectives and Background

The purpose of this HW is to test your understanding of

- Binary Decision Diagrams and the Shannon Expansion

Another purpose of HWs is to provide you with experience answering non-programming written questions of the kind you may experience on the midterm and final.

3 Turn-In Procedure

The pdf for this assignment (hw2.pdf) should be found in the assignments/hw2/ subdirectory of your svn directory for this course. Your solution should be put in that same directory. Using your favorite tool(s), you should put your solution in a file named hw2-submission.pdf. If you have problems generating a pdf, please seek help from the course staff. Your answers to the following questions are to be submitted electronically from within assignments/hw2/ subdirectory by committing the file as follows:

```
git add hw2-submission.pdf
git commit -m "Turning in hw2"
git push
```


4 Problems

For each of the following propositions,
a. (4 pts each) give the Shannon expansion (put it in if_then_else_form), where you use the alphabetical ordering from least to greatest in generating the conditionals by the algorithm shown in class,
b. (5 pts each) give the reduced ordered binary decision diagram (ROBDD), with the variables order smallest to largest alphabetically,
c. (5 pts each) give the reduced ordered binary decision diagram (ROBDD), with the variables order reverse alphabetically,
d. (3pts each) say whether it is satisfiable, and if it is, give a valuation satisfying it.

Since many of you will want to know, I use dot/graphiz to generate the pdfs for the directed graphs you need in b and c. You should feel free to draw them by hand.

1. $(A \wedge B) \vee(A \wedge C)$
2. $(A \Rightarrow(B \Rightarrow C)) \wedge((A \Rightarrow B) \Rightarrow C)$
3. $(A \Rightarrow B) \Rightarrow((A \wedge C) \Rightarrow(B \wedge C))$

5 Extra Credit

4. (10 pts) Show that for any propostion P and valuation of its propositional atoms v, that if v satisfies P then v satisfies the Shannon Expansion of P.
Hint: Firstly, you probably want to prove a more general result concerning partial results of the Shannon Expansion. Secondly, the Shannon Expansion is an iterative algorithm. In each pass something is getting smaller. What is it?
