CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 19, 2020

Elsa L Gunter

CS477 Formal Software Dev Methods

April 19, 2020 1 / 11

- Problem: How to convert an LTL formula in a Büchi Automaton
- Assume LTL formula φ in reduded form

Need

- finite alphabet Σ
- finite set of states S
- transition relation Δ
- start states |
- labeling of the states L
- accepting states F

- States will be natural numbers
- As we build the graph, need to keep temp information
- First pass: Label each node with:
 - Name: Unique number for the node.
 - Incoming: Set of sates with edges that point to current node.
 - New: Set of subformulae of φ that must hold at the current node and have not been processed yet.
 - Old: Set of subformulae of φ that must hold at the current node and have been processed.
 - Next: A set of subformulae of φ that must hold at every immediate successors of the current state.

- Main function expand
- Defined iteratively
- Takes current node, set of nodes previously created, next state number
- Main idea: Separate φ it what holds in current state, and what holds in next state using

$$arphi \, \mathcal{U} \, \psi = \psi \lor (arphi \land \circ (arphi \, \mathcal{U} \, \psi))$$

and

$$\varphi \, \mathcal{V} \, \psi = \psi \wedge (\varphi \vee \circ (\varphi \, \mathcal{V} \, \psi))$$

- Will define expand imperatively
- Need to convert to functional to define in Isabelle

• SF calculates all subformulae of an LTL formula

Formula	New1	Next1	New2
$arphi \mathcal{U} \psi$	$\{\varphi\}$	$\{\varphi \mathcal{U} \psi\}$	$\{\psi\}$
$arphi \mathcal{V} \psi$	$\{\psi\}$	$\{arphi\mathcal{V}\psi\}$	$\{arphi,\psi\}$
$\varphi \wedge \psi$	$\{arphi,\psi\}$	Ø	Ø
$\varphi \lor \psi$	$\{\varphi\}$	Ø	$\{\psi\}$
$\bigcirc \varphi$	Ø	$\{\varphi\}$	Ø

۲

expand: End case merge

- If *New* of current node is emtpty, then we want to combine current node with nodes previously created. Two cases, handled by merge.
- Input to merge:
 - current node,
 - existing node not yet tried,
 - existing nodes that failed to merge with current node,
 - next number to use to make the next state
- First case: No nodes previously created left with which to try to merge :

• Second case: Some previously existing nodes haven't been tried

```
Nodes\_Set = (\{ (name, incoming, old, next) \} \uplus more\_nodes) \Rightarrow
 if (Old(node) = old) \land (Next(node) = next)
 then
  (node\_set\_seen \cup \{(name, (Incoming(node) \cup incoming), old, next)\} \cup
    more_nodes),
   next_node_num)
 else
  merge (node,
           more_nodes.
           next_node_num.
          (\{(name, incoming, old, next)\} \cup node\_set\_seen))
```

function expand (node, (Nodes_Set, next_node_num)) = case New(node) of New(node) = { } \Rightarrow merge (node, Nodes_Set, next_node_num, { }) New(node) = { η } \uplus more_new \Rightarrow New(node) := more_new; let more_old := Old(node) \cup { η } in Old(node) := more_old; case η of

case
$$\eta$$
 of
 $\eta = A$, or $\neg A$, where A proposition, or $\eta = \text{true}$, or $\eta = \text{false} \Rightarrow$
if $\eta = \text{false}$ or $\neg \eta \in \text{more_old}$
then return(*Nodes_Set*, *next_node_num*)
else return (expand ((Name(*node*), Incoming(*node*),
more_new, *more_old*, Next(*node*)),
(*Nodes_Set*, *next_node_num*))

$$\begin{split} \eta &= \varphi \, \mathcal{U} \, \psi, \text{or } \varphi \, \mathcal{V} \, \psi, \text{or } \varphi \vee \psi \; \Rightarrow \\ &\text{let } s_1 := (\,\text{Name}(\textit{node}), \textit{lncoming}(\textit{node}), \\ & \textit{more_new} \cup (\{\,\text{New1}(\eta)\} \setminus \textit{more_old}), \\ & \textit{more_old}, \textit{Next}(\textit{node}) \cup \{\,\text{Next1}(\eta)\} \,) \text{ in} \\ &\text{let } s_2 := (\,\textit{next_node_num}, \textit{lncoming}(\textit{node}), \\ & \textit{more_new} \cup (\{\,\text{New2}(\eta)\} \setminus \textit{more_old}), \\ & \textit{more_old}, \textit{Next}(\textit{node}) \,) \text{ in} \\ & \text{return}(\text{expand}(s_2, (\text{expand}(s_1, (\textit{Nodes_Set}, (\textit{next_node_num} + 1)))))) \end{split}$$

 $\eta = \varphi \wedge \psi \Rightarrow$ return(expand((Name(node), Incoming(node), more_new \cup ({ φ, ψ } \ more_old), *more_old*, Next(*node*)), (*Nodes_Set*, *next_node_num*))) $\eta = \circ \varphi \Rightarrow$ return(expand((Name(node), Incoming(node), more_new, more_old, Next(node) $\cup \{\varphi\}$), (Nodes_Set. next_node_num))) function create_graph(μ) = return(expand ($(1, \{0\}, \{\mu\}, \{\}, \{\}), (\{\}, 2)$))