
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

April 19, 2020

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 1 / 11

LTL Büchi Automaton

Problem: How to convert an LTL formula in a Büchi Automaton

Assume LTL formula ϕ in reduded form

Need

finite alphabet Σ
finite set of states S
transition relation ∆
start states I
labeling of the states L
accepting states F

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 2 / 11

Nodes for building Büchi Automaton

States will be natural numbers

As we build the graph, need to keep temp information

First pass: Label each node with:

Name: Unique number for the node.
Incoming : Set of sates with edges that point to current node.
New : Set of subformulae of ϕ that must hold at the current node and
have not been processed yet.
Old : Set of subformulae of ϕ that must hold at the current node and
have been processed.
Next: A set of subformulae of ϕ that must hold at every immediate
successors of the current state.

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 3 / 11

Input to Algorithm

Main function expand

Defined iteratively

Takes current node, set of nodes previously created, next state
number

Main idea: Separate ϕ it what holds in current state, and what holds
in next state using

ϕU ψ = ψ ∨ (ϕ ∧ ◦(ϕU ψ))

and
ϕV ψ = ψ ∧ (ϕ ∨ ◦(ϕV ψ))

Will define expand imperatively

Need to convert to functional to define in Isabelle

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 4 / 11

Helper Functions: SF, New1, New2,Next1

SF calculates all subformulae of an LTL formula

Formula New1 Next1 New2

ϕU ψ {ϕ} {ϕU ψ} {ψ}
ϕV ψ {ψ} {ϕV ψ} {ϕ,ψ}
ϕ ∧ ψ {ϕ,ψ} ∅ ∅
ϕ ∨ ψ {ϕ} ∅ {ψ}
©ϕ ∅ {ϕ} ∅

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 5 / 11

expand: End case merge

If New of current node is emtpty, then we want to combine current
node with nodes previously created. Two cases, handled by merge.
Input to merge:

current node,
existing node not yet tried,
existing nodes that failed to merge with current node,
next number to use to make the next state

First case: No nodes previously created left with which to try to
merge :

merge (node, Nodes Set, next node num, node set seen) =
case Nodes Set of
Nodes Set = { } ⇒
expand (next node num, {Name(node)}, Next(node), { }, { })

(({(Name(node), Incoming(node),Old(node),Next(node))} ∪
node set seen)

(next node num + 1))

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 6 / 11

expand: End case merge, second case

Second case: Some previously existing nodes haven’t been tried

Nodes Set = ({ (name, incoming , old , next) }]more nodes)⇒
if (Old(node) = old) ∧ (Next(node) = next)
then
(node set seen ∪ {(name, (Incoming(node) ∪ incoming), old , next)}∪
more nodes),
next node num)

else
merge (node,

more nodes,
next node num,

({(name, incoming , old , next)} ∪ node set seen))

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 7 / 11

expand case: New(node) is empty

function expand (node, (Nodes Set, next node num)) =
case New(node) of

New(node) = { } ⇒
merge (node, Nodes Set, next node num, { })

New(node) = {η}]more new ⇒
New(node) := more new ;
let more old := Old(node) ∪ {η} in
Old(node) := more old ;
case η of

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 8 / 11

expand case: atomic propostions and their negations

case η of
η = A, or ¬A,where A proposition, or η = true, or η = false⇒

if η = false or ¬η ∈ more old
then return(Nodes Set, next node num)
else return (expand ((Name(node), Incoming(node),

more new ,more old ,Next(node)),
(Nodes Set, next node num))

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 9 / 11

expand case: η equiv to or

η = ϕU ψ, or ϕV ψ, or ϕ ∨ ψ ⇒
let s1 := (Name(node), Incoming(node),

more new ∪ ({New1(η)} \more old),
more old ,Next(node) ∪ {Next1(η)}) in

let s2 := (next node num, Incoming(node),
more new ∪ ({New2(η)} \more old),
more old ,Next(node)) in

return(expand (s2, (expand (s1, (Nodes Set, (next node num + 1))))));

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 10 / 11

expand cases: and and next

η = ϕ ∧ ψ ⇒
return(expand ((Name(node), Incoming(node),

more new ∪ ({ϕ,ψ} \more old),
more old ,Next(node)),

(Nodes Set, next node num)))
η = ◦ϕ ⇒

return(expand ((Name(node), Incoming(node),
more new ,more old ,Next(node) ∪ {ϕ}),

(Nodes Set, next node num)))
function create graph(µ) =

return(expand ((1, {0}, {µ}, { }, { }), ({ }, 2)))

Elsa L Gunter CS477 Formal Software Dev Methods April 19, 2020 11 / 11

