CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 19, 2020

LTL Büchi Automaton

- Problem: How to convert an LTL formula in a Büchi Automaton
- Assume LTL formula φ in reduded form
- Need
 - finite alphabet Σ
 - finite set of states S
 - transition relation Δ
 - start states |
 - labeling of the states L
 - accepting states F

Nodes for building Büchi Automaton

- States will be natural numbers
- As we build the graph, need to keep temp information
- First pass: Label each node with:
 - Name: Unique number for the node.
 - Incoming: Set of sates with edges that point to current node.
 - New: Set of subformulae of φ that must hold at the current node and have not been processed yet.
 - Old: Set of subformulae of φ that must hold at the current node and have been processed.
 - Next: A set of subformulae of φ that must hold at every immediate successors of the current state.

Input to Algorithm

- Main function expand
- Defined iteratively
- Takes current node, set of nodes previously created, next state number
- Main idea: Separate φ it what holds in current state, and what holds in next state using

$$\varphi \mathcal{U} \psi = \psi \lor (\varphi \land \circ (\varphi \mathcal{U} \psi))$$

and

$$\varphi \, \mathcal{V} \, \psi = \psi \wedge (\varphi \vee \circ (\varphi \, \mathcal{V} \, \psi))$$

- Will define expand imperatively
- Need to convert to functional to define in Isabelle

Helper Functions: SF, New1, New2, Next1

CS477 Formal Softy

• SF calculates all subformulae of an LTL formula

Formula	New1	Next1	New2
$arphi \mathcal{U} \psi$	$\{\varphi\}$	$\{\varphi \mathcal{U} \psi\}$	$\{\psi\}$
$\varphi \mathcal{V} \psi$	$\{\psi\}$	$\{\varphi \mathcal{V} \psi\}$	$\{\varphi,\psi\}$
$\varphi \wedge \psi$	$\{\varphi,\psi\}$	Ø	Ø
$\varphi \vee \psi$	$\{\varphi\}$	Ø	$\{\psi\}$
$\bigcirc \varphi$	Ø	$\{\varphi\}$	Ø

expand: End case merge

• If New of current node is emtpty, then we want to combine current

CS477 Formal Software Dev Met

- node with nodes previously created. Two cases, handled by merge.
- Input to merge:
 - current node, • existing node not yet tried,

 - existing nodes that failed to merge with current node, next number to use to make the next state
- First case: No nodes previously created left with which to try to merge :

merge (node, Nodes_Set, next_node_num, node_set_seen) = case Nodes_Set of

Nodes_Set = $\{ \} \Rightarrow$

expand (next_node_num, {Name(node)}, Next(node), { }, { }) $((\{(Name(node), Incoming(node), Old(node), Next(node))\} \cup$ node_set_seen)

 $(next_node_num + 1))$ CS477 Formal Se

