CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 10, 2020

Elsa L Gunter

CS477 Formal Software Dev Methods

- A Büchi automaton is a 5-tuple $A = (\Sigma, S, \Delta, I, L, F)$ such that
 - Σ is a finite alphabet.
 - *S* is a finite set of *states*.
 - $\Delta \subseteq S \times S$ is the transition relation.
 - $I \subseteq S$ are the *start states*.
 - $L: S \to \Sigma$ is a *labeling* of the *states*.
 - *F* is a set of sets of *accepting states* f where $f \in F \rightarrow f \subseteq S$.

- Let $A = (\Sigma, S, \Delta, I, L, F)$ be a Büchi automaton
- A sequence ρ : $\mathbb{N} \to S$ is a path in A provided that
 - $\rho_0 \in I$
 - For all i, $(\rho_i, \rho_{1+1}) \in \Delta$.
- Let ρ be a path in A. Then $inf(\rho) = \{q \in S | |\{n|q = \rho_n\}| = \omega\}$.
- Path ρ is accepted if for all $f \in F$, $inf(\rho) \cap f \neq \mathbf{0}$
- A word of A is a sequence $v : \mathbb{N} \to \Sigma = \Sigma^{\omega}$ such that there exists a path $\rho \in S^{\omega}$ where for all *i*, $L(\rho_i) = v_i$.
- The language of A, $\mathcal{L}(A) = \{ v \in \Sigma^{\omega} | v \text{ is a word of } A \}.$

•
$$S = \{A, B\}, I = \{A\}, \Delta = \{(A,A), (A,B), (B,B), (B, A)\},$$

 $\Sigma = \{0,1\}, L(A) = 1, L(B) = 0, F_1 = \{\{A, B\}\}$

L(A) = all strings of 1's and '0s that starts with 1

• $S = \{P, R\}, I = \{A\}, \Delta = \{(P,P), (P,R), (R,R), (R,P)\},$ $\Sigma = \{0,1\}, L(P) = 1, L(R) = 0, F_1 = \{\{P\}, \{Q\}\}$

 L(A) = all strings with both infinitely many 1's and infinitely many 0's that starts with 1