
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

April 8, 2020

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 1 / 9

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

What is Model Checking?

Most generally Model Checking is

an automated technique, that given

a finite-state model M of a system

and a logical property ϕ,

checks whether the property holds of model: M |= ϕ?

If M is a transition system, M |= ϕ if σ |= ϕ for every
run σ of M .

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 2 / 9

Model Checking

Model checkers usually give example of failure if M 6|= ϕ, e.g. a
run σ of M such that σ 6|= ϕ

This makes them useful for debugging.
Problem: Can only handle finite models: unbounded or
continuous data sets can’t be directly handled

Symbolic model checking can handle limited cases of finitely presented
models

Problem: Number of states grows exponentially in the size of the
system.

Answer: Use abstract model of system

Problem: Relationship of results on abstract model to real
system?

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 3 / 9

LTL Model Checking

Model Checking Problem: Given model M amd logical property ϕ of
M, does M |= ϕ?

Given transition system M with states Q, transition relation δ and
inital state state I , say M |= ϕ for LTL formula ϕ if every run σ of
M = (Q, δ, I), σ satisfies ϕ, that is σ |= ϕ.

Theorem

The Model Checking Problem for finite transition systems and LTL
formulae is decideable.

Treat states q ∈ Q as letters in an alphabet.

Language of (Q, δ, I), L(Q, δ, I) (or L(M) for short) is set of runs in
M

Language of ϕ, Lϕ = {σ ∈ Qω |σ |= ϕ}
Question: L(M) ⊆ L(ϕ)?

Same as: L(M) ∩ L(¬ϕ) = ∅?
Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 4 / 9

How to Decide the Model Checking Problem?

How to answer L(M) ∩ L(¬ϕ) = ∅?
Common approach:

Build automaton A such the L(A) = L(M) ∩ L(¬ϕ)
Are accepting states of A reachable? (Infinitely often?)

How to build A?

One possible answer: Build a series of automata out of M by recursion
on structure of ¬ϕ.
Another possible answer: Build an automaton B such L(B) = L(¬ϕ);
take A = B × Q, the product automaton.

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 5 / 9

Reducing LTL

LTL given by

ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

| ◦ϕ | ϕU ϕ′ | ϕV ϕ′ | �ϕ | ♦ϕ

Saw equivalences

�ϕ = FV ϕ
♦ϕ = TU ϕ
ϕV ψ = ¬((¬ϕ)U (¬ψ))
ϕU ψ = ¬((¬ϕ)V (¬ψ))
and thus
¬(ϕV ψ) = (¬ϕ)U (¬ψ)
¬(ϕU ψ) = (¬ϕ)V (¬ψ)

Can eliminate � and ♦, and always move negation down to state
predicates p.

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 6 / 9

Reduced LTL

LTL given by

ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

| ◦ϕ | ϕU ϕ′ | ϕV ϕ′ | �ϕ | ♦ϕ

Equivalent language LTLr given by

ϕ ::= p | ¬p | (ϕ) | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ◦ ϕ | ϕU ϕ′ | ϕV ϕ′

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 7 / 9

LTL reduce

LTL reduce(p) = p
LTL reduce(¬p) = ¬p
LTL reduce((ϕ)) = (LTL reduce(ϕ))
LTL reduce(ϕ ∧ ψ) = (LTL reduce(ϕ)) ∧ (LTL reduce(ψ))
LTL reduce(¬(ϕ ∧ ψ)) = (LTL reduce(¬(ϕ))) ∨ (LTL reduce(¬(ψ)))
LTL reduce(ϕ ∨ ψ) = (LTL reduce(ϕ)) ∨ (LTL reduce(ψ))
LTL reduce(¬(ϕ ∨ ψ)) = (LTL reduce(¬(ϕ))) ∧ (LTL reduce(¬(ψ)))
LTL reduce(◦ϕ) = ◦(LTL reduce(ϕ))
LTL reduce(¬(◦ϕ)) = ◦(LTL reduce(¬(ϕ)))

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 8 / 9

LTL reduce

LTL reduce(ϕUψ) = (LTL reduce(ϕ))U(LTL reduce(ψ))
LTL reduce(¬(ϕUψ)) = (LTL reduce(¬(ϕ)))V(LTL reduce(¬(ψ)))
LTL reduce(ϕVψ) = (LTL reduce(ϕ))V(LTL reduce(ψ))
LTL reduce(¬(ϕVψ)) = (LTL reduce(¬(ϕ)))U(LTL reduce(¬(ψ)))
LTL reduce(�ϕ) = FV (LTL reduce(ϕ))
LTL reduce(¬(�ϕ)) = LTL reduce(♦(¬ϕ))
LTL reduce(♦ϕ) = TU (LTL reduce(ϕ))
LTL reduce(¬(♦ϕ)) = LTL reduce(�(¬ϕ))

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 9 / 9

	Model Checking
	Reducing LTL Formulae

