CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

April 8, 2020

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 1/9

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

What is Model Checking?

Most generally Model Checking is
e an automated technique, that given
e a finite-state model M of a system

o and a logical property o,

checks whether the property holds of model: M = ¢7

If M is a transition system, M = ¢ if o |= ¢ for every
run o of M.

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 2/9

Model Checking

e Model checkers usually give example of failure if M [~ ¢, e.g. a
run o of M such that o = ¢
e This makes them useful for debugging.

@ Problem: Can only handle finite models: unbounded or
continuous data sets can't be directly handled

e Symbolic model checking can handle limited cases of finitely presented
models

e Problem: Number of states grows exponentially in the size of the
system.

e Answer: Use abstract model of system

e Problem: Relationship of results on abstract model to real
system?

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 3/9

LTL Model Checking

@ Model Checking Problem: Given model M amd logical property ¢ of
M, does M |= ¢?

@ Given transition system M with states @, transition relation § and
inital state state /, say M |= ¢ for LTL formula ¢ if every run o of
M = (Q,0,1), o satisfies , that is o = .

The Model Checking Problem for finite transition systems and LTL
formulae is decideable.

@ Treat states g € Q as letters in an alphabet.

e Language of (Q,d,/), L(Q,0,1) (or L(M) for short) is set of runs in
M

e Language of o, Lo = {0 € Q¥|0 = ¢}
@ Question: L(M) C L(p)?
@ Same as: L(M) N L(—yp) =07

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 4/9

How to Decide the Model Checking Problem?

e How to answer L(M) N L(—y) = 07
@ Common approach:

o Build automaton A such the L(A) = L(M) N L(—¢)

o Are accepting states of A reachable? (Infinitely often?)
e How to build A?

e One possible answer: Build a series of automata out of M by recursion
on structure of —¢p.

e Another possible answer: Build an automaton B such £L(B) = L(—¢);
take A = B x @, the product automaton.

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 5/9

Reducing LTL

o LTL given by

o u=pl@)~plend oV
| oo eU |V |Op | Op

@ Saw equivalences
Op=FVyp
Op=TUyp
Vi = (=) U (=¢))
eUp =~((—p)V (—¢))
and thus
“(pVih) = (mp)U(—¢)
o ~(pUyp) = (=p) V()
@ Can eliminate OJ and ¢, and always move negation down to state
predicates p.

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 6/9

Reduced LTL

o LTL given by

o u=pl@)~plond oV
| oo |eUY |V |Op | Op

@ Equivalent language LTL" given by

o u=plopl(e) oA eV loploUy |V

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 7/9

LTL reduce

LTL _reduce(p) =
LTL,reduce(—|p) =-p
LTL_reduce((¢)) = (LTL_reduce(yp))
LTL_reduce(p A) = (LTL_reduce(p)) A (LTL_reduce(v))
LTL_reduce(—=(¢ A ¢)) = (LTL_reduce(—(¢))) V (LTL_reduce(—(2)))
LTL reduce(p V ¢) = (LTL_reduce(p)) V (LTL_reduce(%)))
LTL_reduce(=(¢ V ¢)) = (LTL_reduce(—(¢))) A (LTL_reduce(—(2)))
LTL reduce(op) = o(LTL_reduce(y))

(

LTL reduce(—(op)) = o(LTL_reduce(—(¢)))

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 8/9

LTL reduce

LTL _reduce(pldp) (LTL_reduce(p))U(LTL reduce(v))
LTL_reduce(—(pUv))) = (LTL_reduce(—(¢)))V(LTL_ reduce(—(2)))
LTL_reduce(pVv) = (LTL_reduce(y))V(LTL reduce(7)))

LTL reduce(— (Ve)) = (LTL_reduce(—(v)))U(LTL_reduce(—(2))))
LTL _reduce(Cp) = FV (LTL_reduce(y))

LTL reduce(—=(Cy)) = LTL_reduce(O(—¢))

LTL_reduce(Op) = TU (LTL_reduce(y))

LTL_reduce(—(Q¢)) = LTL_reduce(C(—¢))

Elsa L Gunter CS477 Formal Software Dev Methods April 8, 2020 9/9

	Model Checking
	Reducing LTL Formulae

