

How to Decide the Model Checking Problem?

- How to answer $\mathcal{L}(M) \cap \mathcal{L}(\neg \varphi)=\emptyset$?
- Common approach:
- Build automaton A such the $\mathcal{L}(A)=\mathcal{L}(M) \cap \mathcal{L}(\neg \varphi)$
- Are accepting states of A reachable? (Infinitely often?)
- How to build A ?
- One possible answer: Build a series of automata out of M by recursion on structure of $\neg \varphi$.
- Another possible answer: Build an automaton B such $\mathcal{L}(B)=\mathcal{L}(\neg \varphi)$; take $A=B \times Q$, the product automaton.

What is Model Checking?

Most generally Model Checking is

- an automated technique, that given
- a finite-state model M of a system
- and a logical property φ,
- checks whether the property holds of model: $M \models \varphi$?
- If M is a transition system, $M \models \varphi$ if $\sigma \models \varphi$ for every run σ of M.

LTL Model Checking

- Model Checking Problem: Given model M amd logical property φ of M, does $M \models \varphi$?
- Given transition system M with states Q, transition relation δ and inital state state I, say $M \models \varphi$ for LTL formula φ if every run σ of $M=(Q, \delta, I), \sigma$ satisfies φ, that is $\sigma \models \varphi$.

Theorem

The Model Checking Problem for finite transition systems and LTL formulae is decideable.

- Treat states $q \in Q$ as letters in an alphabet.
- Language of $(Q, \delta, I), \mathcal{L}(Q, \delta, I)$ (or $\mathcal{L}(M)$ for short) is set of runs in M
- Language of $\varphi, \mathcal{L} \varphi=\left\{\sigma \in Q^{\omega} \mid \sigma \models \varphi\right\}$
- Question: $\mathcal{L}(M) \subseteq \mathcal{L}(\varphi)$?
- Same as: $\mathcal{L}(M) \cap \mathcal{L}(\neg \varphi)=\emptyset$?

Reducing LTL

- LTL given by

$$
\begin{aligned}
\varphi::= & p|(\varphi)| \neg \varphi\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime} \\
& |\quad \circ \varphi| \varphi \mathcal{U} \varphi^{\prime}\left|\varphi \mathcal{V} \varphi^{\prime}\right| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- Saw equivalences
- $\square \varphi=\mathbf{F} \mathcal{V} \varphi$
- $\Delta \varphi=\mathbf{T} \mathcal{U} \varphi$
- $\varphi \mathcal{V} \psi=\neg((\neg \varphi) \mathcal{U}(\neg \psi))$
- $\varphi \mathcal{U} \psi=\neg((\neg \varphi) \mathcal{V}(\neg \psi))$ and thus
- $\neg(\varphi \mathcal{V} \psi)=(\neg \varphi) \mathcal{U}(\neg \psi)$
- $\neg(\varphi \mathcal{U} \psi)=(\neg \varphi) \mathcal{V}(\neg \psi)$
- Can eliminate \square and \diamond, and always move negation down to state predicates p.

Reduced LTL

- LTL given by

$$
\begin{aligned}
\varphi::= & p|(\varphi)| \neg \varphi\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime} \\
& |\circ \varphi| \varphi \mathcal{U} \varphi^{\prime}\left|\varphi \mathcal{V} \varphi^{\prime}\right| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- Equivalent language LTL ${ }^{r}$ given by

$$
\varphi::=p|\neg p|(\varphi)\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime}|\circ \varphi| \varphi \mathcal{U} \varphi^{\prime} \mid \varphi \mathcal{V} \varphi^{\prime}
$$

LTL_reduce

LTL_reduce $(p)=p$
LTL_reduce $(\neg p)=\neg p$
LTL_reduce $((\varphi))=(\operatorname{LTL}$ reduce $(\varphi))$
$\operatorname{LTL_ reduce}(\varphi \wedge \psi)=($ LTL_reduce $(\varphi)) \wedge($ LTL_reduce $(\psi))$
LTL_reduce $(\neg(\varphi \wedge \psi))=($ LTL_reduce $(\neg(\varphi))) \vee($ LTL_reduce $(\neg(\psi)))$
LTL_reduce $(\varphi \vee \psi)=($ LTL_reduce $(\varphi)) \vee($ LTL_reduce $(\psi))$
LTL_reduce $(\neg(\varphi \vee \psi))=($ LTL_reduce $(\neg(\varphi))) \wedge($ LTL_reduce $(\neg(\psi)))$
LTL_reduce $(\circ \varphi)=\circ($ LTL_reduce $(\varphi))$
LTL_reduce $(\neg(\circ \varphi))=\circ($ LTL_reduce $(\neg(\varphi)))$

LTL_reduce

LTL_reduce $(\varphi \mathcal{U} \psi)=($ LTL_reduce $(\varphi)) \mathcal{U}($ LTL_reduce $(\psi))$
LTL_reduce $(\neg(\varphi \mathcal{U} \psi))=($ LTL_reduce $(\neg(\varphi))) \mathcal{V}$ (LTL_reduce $(\neg(\psi)))$
LTL_reduce $(\varphi \mathcal{V} \psi)=($ LTL_reduce $(\varphi)) \mathcal{V}$ (LTL_reduce $(\psi))$
LTL_reduce $(\neg(\varphi \mathcal{V} \psi))=($ LTL_reduce $(\neg(\varphi))) \mathcal{U}$ (LTL_reduce $(\neg(\psi)))$
LTL_reduce $(\square \varphi)=\mathbf{F} \mathcal{V}$ (LTL_reduce (φ))
LTL_reduce $(\neg(\square \varphi))=$ LTL_reduce $(\diamond(\neg \varphi))$
LTL_reduce $(\Delta \varphi)=\mathbf{T} \mathcal{U}$ (LTL_reduce (φ))
LTL_reduce $(\neg(\diamond \varphi))=$ LTL_reduce $(\square(\neg \varphi))$

