CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

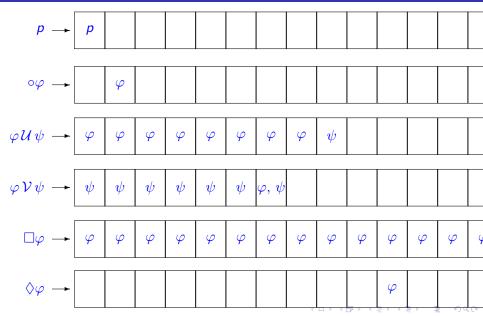
April 3, 2020

Linear Temporal Logic - Syntax

$$\varphi ::= p \mid (\varphi) \mid \neg \varphi \mid \varphi \land \varphi' \mid \varphi \lor \varphi'$$
$$\mid \circ \varphi \mid \varphi \mathcal{U} \varphi' \mid \varphi \mathcal{V} \varphi' \mid \Box \varphi \mid \Diamond \varphi$$

- p a propostion over state variables
- $\circ \varphi$ "next"
- $\varphi \mathcal{U} \varphi'$ "until"
- $\varphi \mathcal{V} \varphi'$ "releases"
- $\Box \varphi$ "box", "always", "forever"
- $\Diamond \varphi$ "diamond", "eventually", "sometime"

LTL Semantics: The Idea



Formal LTL Semantics

Given:

- $\mathcal{G} = (V, F, af, R, ar)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q,p)$ is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ

Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_0 \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
- $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Formal LTL Semantics

- $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some k, $\sigma^k \models \psi$ and for all i < k, $\sigma^i \models \varphi$
- $\sigma \models \varphi V \psi$ iff for some k, $\sigma^k \models \varphi$ and for all $i \leq k$, $\sigma^i \models \psi$, or for all i, $\sigma^i \models \psi$.
- $\sigma \models \Box \varphi$ if for all i, $\sigma^i \models \psi$
- $\sigma \models \Diamond \varphi$ if for some *i*, $\sigma^i \models \psi$

Some Common Combinations

- □◊p "p will hold infinitely often"
- $\Diamond \Box p$ "p will continuously hold from some point on"
- $(\Box p) \Rightarrow (\Box q)$ "if p happens infinitely often, then so does q

Some Equivalences

$$\bullet \ \Box(\varphi \wedge \psi) = (\Box \varphi) \wedge (\Box \psi)$$

•
$$\Diamond(\varphi \lor \psi) = (\Diamond\varphi) \lor (\Diamond\psi)$$

$$\bullet \ \Box \varphi = \mathsf{F} \, \mathcal{V} \, \varphi$$

$$\bullet \ \Diamond \varphi = \mathsf{T} \, \mathcal{U} \, \varphi$$

•
$$\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$$

•
$$\varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V} (\neg \psi))$$

Some More Eqivalences

- $\bullet \ \Box \varphi = \varphi \wedge \circ \Box \varphi$
- $\bullet \ \Diamond \varphi = \varphi \lor \circ \Diamond \varphi$
- $\varphi \mathcal{V} \psi = (\varphi \wedge \psi) \vee (\psi \wedge \circ (\varphi \mathcal{V} \psi))$
- $\bullet \ \varphi \mathcal{U} \psi = \psi \vee (\varphi \wedge \circ (\varphi \mathcal{U} \psi))$
- \Box , \Diamond , \mathcal{U} , \mathcal{V} may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \square vs \lozenge , \mathcal{U} vs \mathcal{V} differ in there limit behavior

Traffic Light Example

Basic Behavior:

- \Box ((NSC = Red) \lor (NSC = Green) \lor (NSC = Yellow))
- \Box ((NSC = Red) \Rightarrow ((NSC \neq Green) \land (NSC \neq Yellow))
- Similarly for Green and Red
- $\square(((NCS = Red) \land \circ (NCS \neq Red)) \Rightarrow \circ (NCS = Green))$
- Same as $\Box((NCS = Red) \Rightarrow ((NCS = Red) \mathcal{U}(NCS = Green)))$
- $\Box(((NCS = Green) \land \circ (NCS \neq Green)) \Rightarrow \circ (NCS = Yellow))$
- $\Box(((NCS = Yellow) \land \circ (NCS \neq Yellow)) \Rightarrow \circ (NCS = Red))$
- Same for EWC

Traffic Light Example

Basic Safety

- \Box ((NSC = Red) \lor (EWC = Red)
- \Box (((NSC = Red) \land (EWC = Red)) \mathcal{V} ((NSC \neq Green) \Rightarrow (\circ (NSC = Green))))

Basic Liveness

- $\Box((\Diamond(\mathit{NSC} = \mathit{Red})) \land (\Diamond(\mathit{NSC} = \mathit{Green})) \land (\Diamond(\mathit{NSC} = \mathit{Yellow})))$
- $\bullet \ \Box((\Diamond(\textit{EWC} = \textit{Red})) \land (\Diamond(\textit{EWC} = \textit{Green})) \land (\Diamond(\textit{EWC} = \textit{Yellow})))$

What is Model Checking?

Most generally Model Checking is

- an automated technique, that given
- a finite-state model M of a system
- ullet and a logical property φ ,
- checks whether the property holds of model: $M \models \varphi$?

Model Checking

- Model checkers usually give example of failure if $M \not\models \varphi$.
- This makes them useful for debugging.
- Problem: Can only handle finite models: unbounded or continuous data sets can't be directly handled
 - Symbolic model checking can handle limited cases of finitely presented models
- Problem: Number of states grows exponentially in the size of the system.
- Answer: Use abstract model of system
- Problem: Relationship of results on abstract model to real system?

LTL Model Checking

- Model Checking Problem: Given model \mathcal{M} amd logical property φ of \mathcal{M} , does $\mathcal{M} \models \varphi$?
- Given transition system with states Q, transition relation δ and inital state state I, say $(Q, \delta, I) \models \varphi$ for LTL formula φ if every run of (Q, δ, I) , σ satisfies $\sigma \models \varphi$.

Theorem

The Model Checking Problem for finite transition systems and LTL formulae is decideable.

- Treat states $q \in Q$ as letters in an alphabet.
- Language of (Q, δ, I) , $\mathcal{L}(Q, \delta, I)$ (or L(Q) for short) is set of runs in Q
- Language of φ , $\mathcal{L}\varphi = \{\sigma | \sigma \models \varphi\}$
- Question: $\mathcal{L}(Q) \subseteq \mathcal{L}(\varphi)$?
- Same as: $\mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi) = \emptyset$?

How to Decide the Model Checking Problem?

- How to answer $\mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi) = \emptyset$?
- Common approach:
 - Build automaton A such the $\mathcal{L}(A) = \mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi)$
 - Are accepting states of A reachable? (Infinitely often?)
- How to build A?
 - One possible answer: Build a series of automata by recursion on structure of $\neg \varphi$.
 - Another possible answer: Build an automaton B such $\mathcal{L}(B) = \mathcal{L}(\neg \varphi)$; take $A = B \times Q$