

LTL Model Checking

- Model Checking Problem: Given model \mathcal{M} and logical property φ of \mathcal{M} , does $\mathcal{M} \models \varphi$?
- Given transition system with states Q, transition relation δ and inital state state I, say (Q, δ, I) ⊨ φ for LTL formula φ if every run of (Q, δ, I), σ satisfies σ ⊨ φ.

Theorem

The Model Checking Problem for finite transition systems and LTL formulae is decideable.

CS477 Formal Software Dev Methods

- Treat states $q \in Q$ as letters in an alphabet.
- Language of (Q, δ, I) , $\mathcal{L}(Q, \delta, I)$ (or L(Q) for short) is set of runs in Q

April 3 2020

13 / 14

- Language of φ , $\mathcal{L}\varphi = \{\sigma | \sigma \models \varphi\}$
- Question: $\mathcal{L}(Q) \subseteq \mathcal{L}(\varphi)$?

Elsa L Gunter

• Same as: $\mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi) = \emptyset$?

How to Decide the Model Checking Problem?

- How to answer $\mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi) = \emptyset$?
- Common approach:
 - Build automaton A such the $\mathcal{L}(A) = \mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi)$
 - Are accepting states of A reachable? (Infinitely often?)
- How to build A?

Elsa L Gunte

- One possible answer: Build a series of automata by recursion on structure of $\neg \varphi.$

CS477 Formal Software Dev Methods

April 3, 2020 14 / 14

• Another possible answer: Build an automaton B such $\mathcal{L}(B)=\mathcal{L}(\neg\varphi);$ take $A=B\times Q$