CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

April 1, 2020

Simple Concurrent Imperative Programming Language (SCIMP1)

$$
\begin{array}{rll}
I & \in & \text { Identifiers } \\
N: & \in & \text { Numerals } \\
E: & := & N|I| E+E|E * E| E-E \\
B: & := & \text { true } \mid \text { false }|B \& B| B \text { or } B \mid \text { not } B \\
& |E<E| E=E \\
C: & & \text { skip }|C ; C|\{C\}|I::=E| C \| C^{\prime} \\
& & \mid \text { if } B \text { then } C \text { else } C \text { fi } \\
& \mid \text { while } B \text { do } C
\end{array}
$$

Semantics for

- $C_{1} \| C_{2}$ means that the actions of C_{1} and done at the same time as, "in parallel" with, those of C_{2}
- True parallelism hard to model; must handle collisions on resources
- What is the meaning of

$$
x:=1 \| x:=0
$$

- True parallelism exists in real world, so important to model correctly

Interleaving Semantics

- Weaker alternative: interleaving semantics
- Each process gets a turn to commit some atomic steps; no preset order of turns, no preset number of actions
- No collision for $\mathrm{x}:=1 \| \mathrm{x}:=0$
- Yields only $\langle\mathrm{x} \mapsto 1\rangle$ and $\langle\mathrm{x} \mapsto 0\rangle$; no collision
- No simultaneous substitution: $x:=y \| y:=x$ results in x and y having the same value; not in swapping their values.

Coarse-Grained Interleaving Semantics for SCIMP1 Commands

- Skip, Assignment, Sequencing, Blocks, If_Then_Else, While unchanged
- Need rules for ||

$$
\begin{array}{cc}
\frac{\left(C_{1}, m\right) \longrightarrow\left(C_{1}^{\prime}, m^{\prime}\right)}{\left(C_{1} \| C_{2}, m\right) \longrightarrow\left(C_{1}^{\prime} \| C_{2}, m^{\prime}\right)} & \frac{\left(C_{1}, m\right) \longrightarrow m^{\prime}}{\left(C_{1} \| C_{2}, m\right) \longrightarrow\left(C_{2}, m^{\prime}\right)} \\
\frac{\left(C_{2}, m\right) \longrightarrow\left(C_{2}^{\prime}, m^{\prime}\right)}{\left(C_{1} \| C_{2}, m\right) \longrightarrow\left(C_{1} \| C_{2}^{\prime}, m^{\prime}\right)} & \frac{\left(C_{2}, m\right) \longrightarrow m^{\prime}}{\left(C_{1} \| C_{2}, m\right) \longrightarrow\left(C_{1}, m^{\prime}\right)}
\end{array}
$$

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q, Σ, δ, I) where

- Q set of states
- Q finite or countably infinite
- Σ set of labels (aka actions)
- Σ finite or countably infinite
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation
- $I \subseteq Q$ initial states

Note: Write $q \xrightarrow{\alpha} q^{\prime}$ for $\left(q, \alpha, q^{\prime}\right) \in \delta$.

Example: Candy Machine

- $Q=\{$ Start, Select, GetMarsBar, GetKitKatBar $\}$
- $I=\{$ Start $\}$
- $\Sigma=\{$ Pay, ChooseMarsBar, ChooseKitKatBar, TakeCandy $\}$
$-\delta=\left\{\begin{array}{l}\text { (Start, Pay, Select) } \\ \text { (Select, ChooseMarsBar, GetMarsBar) } \\ \text { (Select, ChooseKitKatBar, GetKitKatBar) } \\ \text { (GetMarsBar, TakeCandy, Start) } \\ \text { (GetKitKatBar, TakeCandy, Start) }\end{array}\right\}$

Example: Candy Machine

Predecessors, Successors and Determinism

Let (Q, Σ, δ, I) be a labeled transition system.

$$
\begin{array}{ll}
\operatorname{In}(q, \alpha)=\left\{q^{\prime} \mid q^{\prime} \xrightarrow{\alpha} q\right\} & \operatorname{In}(q)=\bigcup_{\alpha \in \Sigma} \operatorname{In}(q, \alpha) \\
\operatorname{Out}(q, \alpha)=\left\{q^{\prime} \mid q \xrightarrow{\alpha} q^{\prime}\right\} & \operatorname{Out}(q)=\bigcup_{\alpha \in \Sigma} \operatorname{Out}(q, \alpha)
\end{array}
$$

A labeled tranistion system (Q, Σ, δ, I) is deterministic if

$$
|I| \leq 1 \text { and }|\operatorname{Out}(q, \alpha)| \leq 1
$$

Labeled Transition Systems vs Finite State Automata

- LTS have no accepting states
- Every FSA an LTS - just forget the accepting states
- Set of states and actions may be countably infinite
- May have infinite branching

Executions, Traces, and Runs

- A partial execution in an LTS is a finite or infinite alternating sequence of states and actions $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ such that
- $q_{0} \in I$
- $q_{i-1} \xrightarrow{\alpha_{i}} q_{i}$ for all i with q_{i} in sequence
- An execution is a maxial partial execution
- A finite or infinite sequence of actions $\alpha_{1} \ldots \alpha_{n} \ldots$ is a trace if there exist states $q_{0} \ldots q_{n} \ldots$ such that the sequence $q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ is a partial execution.
- Let $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ be a partial execution. Then $\operatorname{trace}(\rho)=\alpha_{1} \ldots \alpha_{n} \ldots$
A finite or inifnite sequence of states $q_{0} \ldots q_{n} \ldots$ is a run if there exist actions $\alpha_{1} \ldots \alpha_{n} \ldots$ such that the sequence $q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ is a partial execution.
- Let $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ be a partial execution. Then $\operatorname{run}(\rho)=q_{0} \ldots q_{n} \ldots$

Example: Candy Machine

- Partial execution:
$\rho=$ Start•Pay•Select•ChooseMarsBar•GetMarsBar• TakeCandy•Start
- Trace: $\operatorname{trace}(\rho)=$ Pay \cdot ChooseMarsBar \cdot TakeCandy
- Run: run $(\rho)=$ Start \cdot Select \cdot GetMarsBar \cdot Start

Program Transition System

A Program Transition System is a triple (\mathcal{S}, T, init)

- $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ is a first-order structure over signature $\mathcal{G}=(V, F, a f, R, a r)$, used to interpret expressions and conditionals
- T is a finite set of conditional transitions of the form

$$
g \rightarrow\left(v_{1}, \ldots, v_{n}\right):=\left(e_{1}, \ldots, e_{n}\right)
$$

where $v_{i} \in V$ distinct, and e_{i} term in \mathcal{G}, for $i=1 \ldots n$

- init initial condition asserted to be true at start of program

Example: Traffic Light

$$
\begin{aligned}
& V=\{\text { Turn, NSC }, E W C\}, F=\{N S, E W, \text { Red, Yellow, Green }\} \text { (all arity } 0 \text {), } \\
& R=\{=\}
\end{aligned}
$$

$$
\text { NSG } \quad \text { Turn }=N S \wedge N S C=\text { Red } \rightarrow N S C:=\text { Green }
$$

$$
\text { NSY } \quad \text { Turn }=\text { NS } \wedge N S C=\text { Green } \rightarrow \text { NSC }:=\text { Yellow }
$$

$$
\text { NSR } \quad \text { Turn }=N S \wedge N S C=\text { Yellow } \rightarrow(\text { Turn }, N S C):=(E W, \text { Red })
$$

$$
E W G \quad \text { Turn }=E W \wedge E W C=\text { Red } \rightarrow E W C:=\text { Green }
$$

$$
E W Y \text { Turn }=E W \wedge E W C=\text { Green } \rightarrow E W C:=\text { Yellow }
$$

$$
E W R \text { Turn }=E W \wedge E W C=\text { Yellow } \rightarrow(\text { Turn, EWC }):=(N S, \text { Red })
$$

$$
\text { init }=(N S C=\operatorname{Red} \wedge E W C=\operatorname{Red} \wedge(\text { Turn }=N S \vee \text { Turn }=E W)
$$

Mutual Exclusion (Attempt)

$P 1:: \quad m 1$: while true do
$m 2$: $p 11(*$ not in crit sect $*$)
m3: c1:=0
$m 4$: \quad wait $(c 2=1)$
$m 5$: $r 1(*$ in crit sect $*$)
$m 6: \quad c 1:=1$
m7 : od

P2 :: n1: while true do
n2: p21(*not in crit sect*)
$n 3: c 2:=0$
$n 4$: \quad wait $(c 1=1)$
n5: r2(*in crit sect $*$)
$n 6: c 2:=1$
n7 : od

Mutual Exclusion PTS

$$
\begin{aligned}
& V=\{p c 1, p c 2, c 1, c 2\}, F=\{m 1, \ldots, m 6, n 1, \ldots, n 6,0,1\} \\
& T=\begin{array}{l}
F
\end{array} \\
& p c 1=m 1 \rightarrow p c 1:=m 2 \\
& p c 1=m 2 \rightarrow p c 1:=m 3 \\
& p c 1=m 3 \rightarrow(p c 1, c 1):=(m 4,0) \\
& p c 1=m 4 \wedge c 2=1 \text { to } p c 1:=m 5 \\
& p c 1=m 5 \rightarrow p c 1:=m 6 \\
& p c 1=m 6 \rightarrow(p c 1, c 1):=(m 1,1) \\
& p c 2=n 1 \rightarrow p c 2:=n 2 \\
& p c 2=n 2 \rightarrow p c 2:=n 3 \\
& p c 2=n 3 \rightarrow(p c 2, c 2):=(n 4,0) \\
& p c 2=n 4 \wedge c 1=1 \text { to } p c 2:=n 5 \\
& p c 2=n 5 \rightarrow p c 2:=n 6 \\
& p c 2=n 6 \rightarrow(p c 2, c 2):=(n 1,1)
\end{aligned}
$$

$$
\text { init }=(p c 1=m 1 \wedge p c 2=n 1 \wedge c 1=1 \wedge c 2=1)
$$

Interpreting PTS as LTS

Let $(\mathcal{S}, T$, init) be a program transition system. Assume V finite, \mathcal{D} at most countable.

- Let $Q=V \rightarrow \mathcal{D}$, interpretted as all assingments of values to variables
- Can restrict to mappings q where v and $q(v)$ have same type
- Let $\Sigma=T$
- Let $\delta=\left\{\left(q, g \rightarrow\left(v_{1}, \ldots, v_{n}\right):=\left(e_{1}, \ldots, e_{n}\right), q^{\prime}\right) \mid\right.$

$$
\begin{aligned}
& \mathcal{M}_{q}(g) \wedge \\
& \left(\forall i \leq n \cdot q^{\prime}\left(v_{i}\right)=\mathcal{T}_{q}\left(e_{j}\right)\right) \wedge \\
& \left.\left(\forall v \notin\left\{v_{1}, \ldots, v_{n}\right\} \cdot q^{\prime}(v)=q(v)\right)\right\}
\end{aligned}
$$

- $I=\left\{q \mid \mathcal{T}_{q}(\right.$ init $\left.)=\mathbf{T}\right\}$

Example: Traffic Light

$$
\begin{aligned}
& V=\{\text { Turn, NSC }, E W C\}, F=\{N S, E W, \text { Red, Yellow, Green }\} \text { (all arity } 0 \text {), } \\
& R=\{=\}
\end{aligned}
$$

$$
\text { NSG } \quad \text { Turn }=N S \wedge N S C=\text { Red } \rightarrow N S C:=\text { Green }
$$

$$
\text { NSY } \quad \text { NSC }=\text { Green } \rightarrow \text { NSC }:=\text { Yellow }
$$

$$
\text { NSR } \quad N S C=\text { Yellow } \rightarrow(\text { Turn, NSC }):=(E W, \text { Red })
$$

$$
E W G \text { Turn }=E W \wedge E W C=\text { Red } \rightarrow E W C:=\text { Green }
$$

$$
\text { EWY } \quad E W C=\text { Green } \rightarrow E W C:=\text { Yellow }
$$

$$
E W R \quad E W C=\text { Yellow } \rightarrow(\text { Turn }, E W C):=(N S, \text { Red })
$$

$$
\text { init }=(N S C=\operatorname{Red} \wedge E W C=\operatorname{Red} \wedge(\text { Turn }=N S \vee \text { Turn }=E W)
$$

Example: Traffic Lights

Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2=18$ possible well typed states
- Is is possible to reach a state where $N S C \neq \operatorname{Red} \wedge E W C \neq \operatorname{Red}$ from an initial state?
- If so, what sequence of actions allows this?
- Do all the immediate predecessors of a state where $N S C=$ Green $\vee E W C=$ Green satisfy $N S C=\operatorname{Red} \wedge E W C=$ Red?
- If not, are any of those offend states reachable from and initial state, and if so, how?
- LTS for Mutual Exclusion has $6 \times 6 \times 2 \times 2=144$ posible well-tped states.
- Is is possible to reach a state where $p c 1=m 5 \wedge p c 2=n 5$?
- How can we state these questions rigorously, formally?
- Can we find an algorithm to answer these types of questions?

Linear Temporal Logic - Syntax

$$
\begin{aligned}
\varphi:: & p|(\varphi)| \varphi\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime} \\
& |\circ \varphi| \varphi \mathcal{U} \varphi^{\prime}\left|\varphi \mathcal{V} \varphi^{\prime}\right| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- p-a propostion over state variables
- $\circ \varphi$ - "next"
- $\varphi \mathcal{U} \varphi^{\prime}$ - "until"
- $\varphi \mathcal{V} \varphi^{\prime}$ - "releases"
- $\square \varphi$ - "box", "always", "forever"
- $\Delta \varphi$ - "diamond", "eventually", "sometime"

LTL Semantics: The Idea

Formal LTL Semantics

Given:

- $\mathcal{G}=(V, F, a f, R, a r)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and $\mathcal{G}: \mathcal{M}(q, p)$ is true iff q models p. Write $q \models p$.
- $\sigma=q_{0} q_{1} \ldots q_{n} \ldots$ infinite sequence of state from Q.
- $\sigma^{i}=q_{i} q_{i+1} \ldots q_{n} \ldots$ the $i^{\text {th }}$ tail of σ

Say σ models LTL formula φ, write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_{0} \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not \models \varphi$
- $\sigma \models \varphi \wedge \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \vee \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Formal LTL Semantics

- $\sigma \models o \varphi$ iff $\sigma^{1} \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^{k} \models \psi$ and for all $i<k, \sigma^{i} \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^{k} \models \varphi$ and for all $i \leq k, \sigma^{i} \models \psi$, or for all $i, \sigma^{i} \models \psi$.
- $\sigma \models \square \varphi$ if for all $i, \sigma^{i} \models \psi$
- $\sigma \models \Delta \varphi$ if for some $i, \sigma^{i} \models \psi$

Some Common Combinations

- $\square \diamond$ p " p will hold infinitely often"
- $\Delta \square p$ " p will continuously hold from some point on"
- $(\square p) \Rightarrow(\square q)$ "if p happens infinitely often, then so does q

Some Equivalences

- $\square(\varphi \wedge \psi)=(\square \varphi) \wedge(\square \psi)$
- $\diamond(\varphi \vee \psi)=(\diamond \varphi) \vee(\diamond \psi)$
- $\square \varphi=\mathbf{F} \mathcal{V} \varphi$
- $\Delta \varphi=\mathbf{T} \mathcal{U} \varphi$
- $\varphi \mathcal{V} \psi=\neg((\neg \varphi) \mathcal{U}(\neg \psi))$
- $\varphi \mathcal{U} \psi=\neg((\neg \varphi) \mathcal{V}(\neg \psi))$
- $\neg(\diamond \varphi)=\square(\neg \varphi)$
- $\neg(\square \varphi)=\diamond(\neg \varphi)$

Some More Eqivalences

- $\square \varphi=\varphi \wedge \circ \square \varphi$
- $\Delta \varphi=\varphi \vee \circ \diamond \varphi$
- $\varphi \mathcal{V} \psi=(\varphi \wedge \psi) \vee(\psi \wedge \circ(\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi=\psi \vee(\varphi \wedge \circ(\varphi \mathcal{V} \psi)$
- $\square, \diamond, \mathcal{U}, \mathcal{V}$ may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \square vs \diamond, \mathcal{U} vs \mathcal{V} differ in there limit behavior

Traffic Light Example

Basic Behavior:

- $\square(($ NSC $=$ Red $) \vee($ NSC $=$ Green $) \vee($ NSC $=$ Yellow $))$
- $\square(($ NSC $=$ Red $) \Rightarrow(($ NSC \neq Green $) \wedge($ NSC \neq Yellow $))$
- Similarly for Green and Red
- $\square(((N C S=$ Red $) \wedge \circ(N C S \neq$ Red $)) \Rightarrow \circ(N C S=$ Green $))$
- Same as $\square((N C S=\operatorname{Red}) \Rightarrow((N C S=\operatorname{Red}) \mathcal{U}(N C S=$ Green $)))$
- $\square(((N C S=$ Green $) \wedge \circ(N C S \neq$ Green $)) \Rightarrow \circ(N C S=$ Yellow $))$
- $\square(((N C S=$ Yellow $) \wedge \circ(N C S \neq$ Yellow $)) \Rightarrow \circ(N C S=$ Red $))$
- Same for EWC

Traffic Light Example

Basic Safety

- $\square((N S C=R e d) \vee(E W C=R e d)$
- $\square(((N S C=R e d) \wedge(E W C=R e d)) \mathcal{V}$ $(($ NSC \neq Green $) \Rightarrow(\circ($ NSC $=$ Green $))))$
Basic Liveness
- $(\diamond($ NSC $=$ Red $)) \wedge(\diamond($ NSC $=$ Green $)) \wedge(\diamond($ NSC $=$ Yellow $))$
- $(\diamond(E W C=$ Red $)) \wedge(\diamond(E W C=$ Green $)) \wedge(\diamond(E W C=$ Yellow $))$

Proof System for LTL

- First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi=\neg((\neg \varphi) \mathcal{U}(\neg \psi))$
- Second Step: Extend all rules of Prop Logic to LTL
- Third Step: Add one more rule: $\frac{\varphi}{\square \varphi}$ Gen
- Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
- A1: $\square \varphi \Leftrightarrow \neg(\diamond(\neg \varphi))$
- A2: $\square(\varphi \Rightarrow \psi) \Rightarrow(\square \varphi \Rightarrow \square \psi)$
- A3: $\square \varphi \Rightarrow(\varphi \wedge \circ \square \varphi)$
- A4: $\circ \neg \varphi \Leftrightarrow \neg \circ \varphi$
- A5: $\circ(\varphi \Rightarrow \psi) \Rightarrow(\circ \varphi \Rightarrow \circ \psi)$
- A6: $\square(\varphi \Rightarrow \circ \varphi) \Rightarrow(\varphi \Rightarrow \square \varphi)$
- A7: $\varphi \mathcal{U} \psi \Leftrightarrow(\varphi \wedge \psi) \vee(\varphi \wedge \circ(\varphi \mathcal{V} \psi)$
- A8: $\varphi \mathcal{U} \psi \Rightarrow \Delta \psi$
- Result: a sound and relatively complete proof system
- Can implement in Isabelle in much the same way as we did Hoare Logic

