CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 1, 2020

Simple Concurrent Imperative Programming Language (SCIMP1)

```
I ∈ Identifiers
N \in Numerals
E ::= N | I | E + E | E * E | E - E
B ::= true \mid false \mid B \& B \mid B \text{ or } B \mid not B
          \mid E < E \mid E = E
C ::= skip | C; C | \{C\} | I ::= E | C | C'
           | if B then C else C fi
           | while B do C
```

Semantics for

- $C_1 \parallel C_2$ means that the actions of C_1 and done at the same time as, "in parallel" with, those of C_2
- True parallelism hard to model; must handle collisions on resources
 - What is the meaning of

$$x := 1 || x := 0$$

True parallelism exists in real world, so important to model correctly

Interleaving Semantics

- Weaker alternative: interleaving semantics
- Each process gets a turn to commit some atomic steps; no preset order of turns, no preset number of actions
- No collision for x := 1 || x := 0
 - Yields only $\langle x \mapsto 1 \rangle$ and $\langle x \mapsto 0 \rangle$; no collision
- No simultaneous substitution: x := y || y := x results in x and y having the same value; not in swapping their values.

Coarse-Grained Interleaving Semantics for SCIMP1 Commands

- Skip, Assignment, Sequencing, Blocks, If_Then_Else, While unchanged
- Need rules for

$$\frac{(C_1, m) \longrightarrow (C_1', m')}{(C_1 \parallel C_2, m) \longrightarrow (C_1' \parallel C_2, m')} \qquad \frac{(C_1, m) \longrightarrow m'}{(C_1 \parallel C_2, m) \longrightarrow (C_2, m')}$$
$$\frac{(C_2, m) \longrightarrow (C_2', m')}{(C_1 \parallel C_2, m) \longrightarrow (C_1 \parallel C_2', m')} \qquad \frac{(C_2, m) \longrightarrow m'}{(C_1 \parallel C_2, m) \longrightarrow (C_1, m')}$$

Labeled Transition System (LTS)

A labeled transition system (LTS) is a 4-tuple (Q, Σ, δ, I) where

- Q set of states
 - Q finite or countably infinite
- ∑ set of labels (aka actions)
 - Σ finite or countably infinite
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation
- $I \subseteq Q$ initial states

Note: Write $q \xrightarrow{\alpha} q'$ for $(q, \alpha, q') \in \delta$.

Example: Candy Machine

Example: Candy Machine

Predecessors, Successors and Determinism

Let (Q, Σ, δ, I) be a labeled transition system.

$$ln(q, \alpha) = \{q' | q' \xrightarrow{\alpha} q\} \qquad ln(q) = \bigcup_{\alpha \in \Sigma} ln(q, \alpha)$$

$$Out(q, \alpha) = \{q' | q \xrightarrow{\alpha} q'\} \quad Out(q) = \bigcup_{\alpha \in \Sigma} Out(q, \alpha)$$

A labeled transstion system (Q, Σ, δ, I) is deterministic if

$$|I| \leq 1$$
 and $|Out(q, lpha)| \leq 1$

Labeled Transition Systems vs Finite State Automata

- LTS have no accepting states
 - Every FSA an LTS just forget the accepting states
- Set of states and actions may be countably infinite
- May have infinite branching

Executions, Traces, and Runs

- A partial execution in an LTS is a finite or infinite alternating sequence of states and actions $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ such that
 - $q_0 \in I$
 - $q_{i-1} \xrightarrow{\alpha_i} q_i$ for all i with q_i in sequence
- An execution is a maxial partial execution
- A finite or infinite sequence of actions $\alpha_1 \dots \alpha_n \dots$ is a trace if there exist states $q_0 \dots q_n \dots$ such that the sequence $q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ is a partial execution.
 - Let $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ be a partial execution. Then $trace(\rho) = \alpha_1 \dots \alpha_n \dots$

A finite or inifnite sequence of states $q_0 \ldots q_n \ldots$ is a run if there exist actions $\alpha_1 \ldots \alpha_n \ldots$ such that the sequence $q_0 \alpha_1 q_1 \ldots \alpha_n q_n \ldots$ is a partial execution.

• Let $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ be a partial execution. Then $run(\rho) = q_0 \dots q_n \dots$

Example: Candy Machine

- Partial execution: $\rho = Start \cdot Pay \cdot Select \cdot ChooseMarsBar \cdot GetMarsBar \cdot TakeCandy \cdot Start$
- Trace: $trace(\rho) = Pay \cdot ChooseMarsBar \cdot TakeCandy$
- Run: $run(\rho) = Start \cdot Select \cdot GetMarsBar \cdot Start$

Program Transition System

A Program Transition System is a triple (S, T, init)

- $S = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ is a first-order structure over signature $\mathcal{G} = (V, F, af, R, ar)$, used to interpret expressions and conditionals
- T is a finite set of conditional transitions of the form

$$g \rightarrow (v_1, \ldots, v_n) := (e_1, \ldots, e_n)$$

where $v_i \in V$ distinct, and e_i term in \mathcal{G} , for $i = 1 \dots n$

• init initial condition asserted to be true at start of program

Example: Traffic Light

```
V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\}  (all arity 0),
R = \{=\}
  NSG
             Turn = NS \land NSC = Red \rightarrow NSC := Green
  NSY
           Turn = NS \land NSC = Green \rightarrow NSC := Yellow
  NSR
          Turn = NS \land NSC = Yellow \rightarrow (Turn, NSC) := (EW, Red)
  FWG
           Turn = EW \land EWC = Red \rightarrow EWC := Green
  FWY
         Turn = FW \land FWC = Green \rightarrow FWC := Yellow
  EWR \ Turn = EW \land EWC = Yellow \rightarrow (Turn, EWC) := (NS, Red)
init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)
```

Mutual Exclusion (Attempt)

Mutual Exclusion PTS

$$V = \{pc1, pc2, c1, c2\}, F = \{m1, \dots, m6, n1, \dots, n6, 0, 1\}$$

$$T = pc1 = m1 \rightarrow pc1 := m2$$

$$pc1 = m3 \rightarrow (pc1, c1) := (m4, 0)$$

$$pc1 = m4 \land c2 = 1 \text{ to } pc1 := m5$$

$$pc1 = m5 \rightarrow pc1 := m6$$

$$pc1 = m6 \rightarrow (pc1, c1) := (m1, 1)$$

$$pc2 = n1 \rightarrow pc2 := n2$$

$$pc2 = n2 \rightarrow pc2 := n3$$

$$pc2 = n3 \rightarrow (pc2, c2) := (n4, 0)$$

$$pc2 = n4 \land c1 = 1 \text{ to } pc2 := n5$$

$$pc2 = n6 \rightarrow (pc2, c2) := (n1, 1)$$

$$init = (pc1 = m1 \land pc2 = n1 \land c1 = 1 \land c2 = 1)$$

Interpreting PTS as LTS

Let (S, T, init) be a program transition system. Assume V finite, \mathcal{D} at most countable.

- Let $Q = V \to \mathcal{D}$, interpretted as all assingments of values to variables
 - Can restrict to mappings q where v and q(v) have same type
- Let $\Sigma = T$
- Let $\delta = \{(q, g \rightarrow (v_1, \dots, v_n) := (e_1, \dots, e_n), q') \mid \mathcal{M}_q(g) \land (\forall i \leq n. q'(v_i) = \mathcal{T}_q(e_i)) \land (\forall v \notin \{v_1, \dots, v_n\}. \ q'(v) = q(v))\}$
- $I = \{q | \mathcal{T}_q(init) = \mathbf{T}\}$

Example: Traffic Light

```
V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\}  (all arity 0),
R = \{=\}
   NSG
           Turn = NS \land NSC = Red \rightarrow NSC := Green
   NSY
                        NSC = Green \rightarrow NSC := Yellow
   NSR
                       NSC = Yellow \rightarrow (Turn, NSC) := (EW, Red)
   EWG \ Turn = EW \land EWC = Red \rightarrow EWC := Green
   FWY
                       EWC = Green \rightarrow EWC := Yellow
   FWR
                       EWC = Yellow \rightarrow (Turn, EWC) := (NS, Red)
init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)
```

Example: Traffic Lights

Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2 = 18$ possible well typed states
 - Is is possible to reach a state where NSC ≠ Red ∧ EWC ≠ Red from an initial state?
 - If so, what sequence of actions allows this?
 - Do all the immediate predecessors of a state where
 NSC = Green ∨ EWC = Green satisfy NSC = Red ∧ EWC = Red?
 - If not, are any of those offend states reachable from and initial state, and if so, how?
- LTS for Mutual Exclusion has $6 \times 6 \times 2 \times 2 = 144$ posible well-tped states.
 - Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- How can we state these questions rigorously, formally?
- Can we find an algorithm to answer these types of questions?

Linear Temporal Logic - Syntax

$$\varphi ::= p|(\varphi)| \not \varphi | \varphi \wedge \varphi' | \varphi \vee \varphi'$$
$$| \circ \varphi | \varphi \mathcal{U} \varphi' | \varphi \mathcal{V} \varphi' | \Box \varphi | \Diamond \varphi$$

- p − a propostion over state variables
- $\circ \varphi$ "next"
- $\varphi \mathcal{U} \varphi'$ "until"
- $\varphi \mathcal{V} \varphi'$ "releases"
- $\Box \varphi$ "box", "always", "forever"
- $\Diamond \varphi$ "diamond", "eventually", "sometime"

LTL Semantics: The Idea

Formal LTL Semantics

Given:

- $\mathcal{G} = (V, F, af, R, ar)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q,p)$ is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ

Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_0 \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
- $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Formal LTL Semantics

- $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some k, $\sigma^k \models \psi$ and for all i < k, $\sigma^i \models \varphi$
- $\sigma \models \varphi V \psi$ iff for some k, $\sigma^k \models \varphi$ and for all $i \leq k$, $\sigma^i \models \psi$, or for all i, $\sigma^i \models \psi$.
- $\sigma \models \Box \varphi$ if for all i, $\sigma^i \models \psi$
- $\sigma \models \Diamond \varphi$ if for some *i*, $\sigma^i \models \psi$

Some Common Combinations

- □◊p "p will hold infinitely often"
- $\Diamond \Box p$ "p will continuously hold from some point on"
- $(\Box p) \Rightarrow (\Box q)$ "if p happens infinitely often, then so does q

Some Equivalences

$$\bullet \ \Box(\varphi \wedge \psi) = (\Box \varphi) \wedge (\Box \psi)$$

$$\bullet \ \Box \varphi = \mathbf{F} \, \mathcal{V} \, \varphi$$

$$\bullet \ \Diamond \varphi = \mathsf{T} \, \mathcal{U} \, \varphi$$

•
$$\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$$

•
$$\varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V} (\neg \psi))$$

Some More Eqivalences

- $\bullet \ \Box \varphi = \varphi \wedge \circ \Box \varphi$
- $\varphi \mathcal{V} \psi = (\varphi \wedge \psi) \vee (\psi \wedge \circ (\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi = \psi \vee (\varphi \wedge \circ (\varphi \mathcal{V} \psi))$
- \Box , \Diamond , \mathcal{U} , \mathcal{V} may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \square vs \lozenge , \mathcal{U} vs \mathcal{V} differ in there limit behavior

Traffic Light Example

Basic Behavior:

- \Box ((NSC = Red) \lor (NSC = Green) \lor (NSC = Yellow))
- \Box ((NSC = Red) \Rightarrow ((NSC \neq Green) \land (NSC \neq Yellow))
- Similarly for *Green* and *Red*
- $\square(((NCS = Red) \land \circ (NCS \neq Red)) \Rightarrow \circ (NCS = Green))$
- Same as $\Box((NCS = Red) \Rightarrow ((NCS = Red) \mathcal{U}(NCS = Green)))$
- $\Box(((\mathit{NCS} = \mathit{Green}) \land \circ(\mathit{NCS} \neq \mathit{Green})) \Rightarrow \circ(\mathit{NCS} = \mathit{Yellow}))$
- $\Box(((NCS = Yellow) \land \circ (NCS \neq Yellow)) \Rightarrow \circ (NCS = Red))$
- Same for EWC

Traffic Light Example

Basic Safety

- \Box ((NSC = Red) \lor (EWC = Red)
- \Box (((NSC = Red) \land (EWC = Red)) V((NSC \neq Green) \Rightarrow (\circ (NSC = Green))))

Basic Liveness

- $(\lozenge(\mathit{NSC} = \mathit{Red})) \land (\lozenge(\mathit{NSC} = \mathit{Green})) \land (\lozenge(\mathit{NSC} = \mathit{Yellow}))$
- $\bullet \ (\lozenge(\textit{EWC} = \textit{Red})) \land (\lozenge(\textit{EWC} = \textit{Green})) \land (\lozenge(\textit{EWC} = \textit{Yellow}))$

Proof System for LTL

- First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi = \neg((\neg \varphi)\mathcal{U}(\neg \psi))$
- Second Step: Extend all rules of Prop Logic to LTL
- \bullet Third Step: Add one more rule: $\frac{\varphi}{\Box \varphi}\operatorname{Gen}$
- Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
 - A1: $\Box \varphi \Leftrightarrow \neg (\Diamond (\neg \varphi))$
 - A2: $\Box(\varphi \Rightarrow \psi) \Rightarrow (\Box\varphi \Rightarrow \Box\psi)$
 - A3: $\Box \varphi \Rightarrow (\varphi \land \circ \Box \varphi)$
 - A4: ∘¬φ ⇔ ¬ ∘ φ
 - A5: $\circ(\varphi \Rightarrow \psi) \Rightarrow (\circ\varphi \Rightarrow \circ\psi)$
 - A6: $\Box(\varphi \Rightarrow \circ \varphi) \Rightarrow (\varphi \Rightarrow \Box \varphi)$
 - A7: $\varphi \mathcal{U} \psi \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \circ (\varphi \mathcal{V} \psi))$
 - A8: $\varphi \mathcal{U} \psi \Rightarrow \Diamond \psi$
- Result: a sound and relatively complete proof system
- Can implement in Isabelle in much the same way as we did Hoare Logic

April 1, 2020