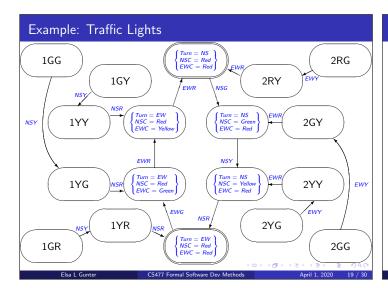


Interpreting PTS as LTS

Let (S, T, init) be a program transition system. Assume V finite, \mathcal{D} at most countable.

• Let $\mathcal{Q} = \mathcal{V}
ightarrow \mathcal{D}$, interpretted as all assingments of values to variables

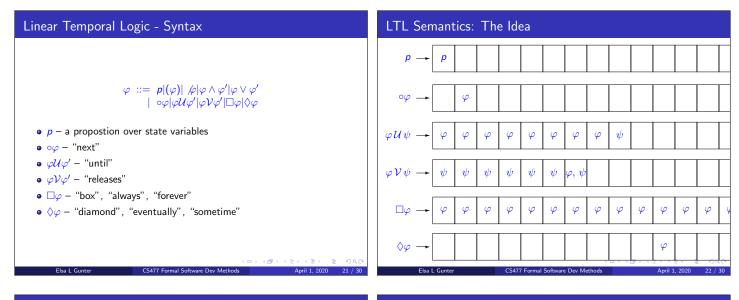

• Can restrict to mappings q where v and q(v) have same type

• Let $\Sigma = T$

- Let $\delta = \{(q, g \rightarrow (v_1, \dots, v_n) := (e_1, \dots, e_n), q') \mid \mathcal{M}_q(g) \land (\forall i \leq n.q'(v_i) = \mathcal{T}_q(e_i)) \land (\forall v \notin \{v_1, \dots, v_n\}, q'(v) = q(v))\}$
- $I = \{q | \mathcal{T}_q(init) = \mathbf{T}\}$

Example: Traffic Light

```
V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\} \text{ (all arity 0)}, R = \{=\}
NSG \quad Turn = NS \land NSC = Red \rightarrow NSC := Green
NSY \quad NSC = Green \rightarrow NSC := Yellow
NSR \quad NSC = Yellow \rightarrow (Turn, NSC) := (EW, Red)
EWG \quad Turn = EW \land EWC = Red \rightarrow EWC := Green
EWY \quad EWC = Green \rightarrow EWC := Yellow
EWR \quad EWC = Yellow \rightarrow (Turn, EWC) := (NS, Red)
init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)
```



Examples (cont)

Elsa L Gunte

- LTS for traffic light has $3 \times 3 \times 2 = 18$ possible well typed states • Is is possible to reach a state where $NSC \neq Red \land EWC \neq Red$ from
 - an initial state?If so, what sequence of actions allows this?
 - If so, what sequence of actions allows this?
 Do all the immediate predecessors of a state where
 - $NSC = Green \lor EWC = Green satisfy NSC = Red \land EWC = Red?$
 - If not, are any of those offend states reachable from and initial state,
- and if so, how? \bullet LTS for Mutual Exclusion has $6\times6\times2\times2=144$ posible well-tped states.
 - Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- How can we state these questions rigorously, formally?
- Can we find an algorithm to answer these types of questions?

CS477 Formal Software Dev Method

April 1 202

Formal LTL Semantics

Given:

- $\mathcal{G} = (V, F, af, R, ar)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q, p)$ is true iff q models p. Write $q \models p$.

CS477 Formal Software Dev Methods

- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the *i*th tail of σ
- Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:
 - $\sigma \models p$ iff $q_0 \models p$
 - $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 - $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
 - $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

<日 > < E > < E > を = の <

Formal LTL Semantics

• $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$

- $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^k \models \psi$ and for all $i < k, \sigma^i \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^k \models \varphi$ and for all $i \le k, \sigma^i \models \psi$,
- or for all $i, \sigma^i \models \psi$.

CS477 Formal Software Dev Met

- $\sigma \models \Box \varphi$ if for all $i, \sigma^i \models \psi$
- $\sigma \models \Diamond \varphi$ if for some *i*, $\sigma^i \models \psi$

Some Common Combinations	Some Equivalences
 □◊p "p will hold infinitely often" ◊□p "p will continuously hold from some point on" (□p) ⇒ (□q) "if p happens infinitely often, then so does q 	• $\Box(\varphi \land \psi) = (\Box \varphi) \land (\Box \psi)$ • $\Diamond(\varphi \lor \psi) = (\Diamond \varphi) \lor (\Diamond \psi)$ • $\Box \varphi = \mathbf{F} \mathcal{V} \varphi$ • $\Diamond \varphi = \mathbf{T} \mathcal{U} \varphi$ • $\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$ • $\varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V} (\neg \psi))$ • $\neg(\Diamond \varphi) = \Box(\neg \varphi)$ • $\neg(\Box \varphi) = \Diamond(\neg \varphi)$
(ロン・グラン・ミン・ミン・ミークへへ Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 25 / 30	・ロ・ク・ミ・ミ・ミックへ Eka L Gunter CS477 Formal Software Dev Methods April 1, 2020 26 / 30
Esa E sunter CS417 Pormai Sottware Dev metricos April 1, 2020 23 / 30	Elsa E Guitter C3477 Formal Software Dev Internous April 1, 2020 20 / 30
Some More Eqivalences	Traffic Light Example
 □φ = φ ∧ ο□φ ◊φ = φ ∨ ο◊φ φ V ψ = (φ ∧ ψ) ∨ (ψ ∧ ο(φ V ψ)) φ U ψ = ψ ∨ (φ ∧ ο(φ V ψ)) □, ◊, U, V may all be understood recursively, by what they state about right now, and what they state about the future Caution: □ vs ◊, U vs V differ in there limit behavior 	Basic Behavior: • $\Box((NSC = Red) \lor (NSC = Green) \lor (NSC = Yellow))$ • $\Box((NSC = Red) \Rightarrow ((NSC \neq Green) \land (NSC \neq Yellow))$ • Similarly for <i>Green</i> and <i>Red</i> • $\Box(((NCS = Red) \land \circ(NCS \neq Red)) \Rightarrow \circ(NCS = Green))$ • Same as $\Box((NCS = Red) \Rightarrow ((NCS = Red) U (NCS = Green)))$ • $\Box(((NCS = Green) \land \circ(NCS \neq Green)) \Rightarrow \circ(NCS = Yellow))$ • $\Box(((NCS = Yellow) \land \circ(NCS \neq Yellow)) \Rightarrow \circ(NCS = Red))$ • Same for <i>EWC</i>
(고) (경) (온) 온 것으(Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 27 / 30	(고) · (군) · (Z)
Traffic Light Example	Proof System for LTL
Basic Safety • $\Box((NSC = Red) \lor (EWC = Red)$ • $\Box(((NSC = Red) \land (EWC = Red)) \lor ((NSC \neq Green) \Rightarrow (\circ(NSC = Green))))$ Basic Liveness • $(\diamond(NSC = Red)) \land (\diamond(NSC = Green)) \land (\diamond(NSC = Yellow))$ • $(\diamond(EWC = Red)) \land (\diamond(EWC = Green)) \land (\diamond(EWC = Yellow))$	 First step: View φ V ψ as moacro: φ V ψ = ¬((¬φ) U (¬ψ)) Second Step: Extend all rules of Prop Logic to LTL Third Step: Add one more rule: φ/□φ Gen Fourth Step: Add a collection of axioms (a sufficient set of 8 exists) A1: □φ ⇔ ¬(◊(¬φ)) A2: □(φ ⇒ ψ) ⇒ (□φ ⇒ □ψ) A3: □φ ⇒ (φ ∧ ○□φ) A4: ○¬φ ⇔ ¬ ∘ φ A5: ○(φ ⇒ ψ) ⇒ (○φ ⇒ ○ψ) A6: □(φ ⇒ φ) ⇒ (○φ ⇒ □φ) A7: φU ψ ⇔ (φ ∧ ψ) ∨ (φ ∧ ○(φ V ψ)) A8: φU ψ ⇒ ◊ψ Result: a sound and relatively complete proof system Can implement in Isabelle in much the same way as we did Hoare Logic
(ロシ(ラシ(ミン(ラン)をき) きょうへん Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 29 / 30	Logic (고) (군) (군) (군) 문 옷 옷 옷 옷 옷 옷 옷 옷 옷 옷 옷 옷