
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

April 1, 2020

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 1 / 30

Simple Concurrent Imperative Programming Language
(SCIMP1)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ;C | {C} | I ::= E | C‖C ′

| if B then C else C fi

| while B do C

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 2 / 30

Semantics for ‖

C1‖C2 means that the actions of C1 and done at the same time as,
“in parallel” with, those of C2

True parallelism hard to model; must handle collisions on resources

What is the meaning of
x := 1‖ x := 0

True parallelism exists in real world, so important to model correctly

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 3 / 30

Interleaving Semantics

Weaker alternative: interleaving semantics

Each process gets a turn to commit some atomic steps; no preset
order of turns, no preset number of actions

No collision for x := 1‖ x := 0

Yields only 〈x 7→ 1〉 and 〈x 7→ 0〉; no collision

No simultaneous substitution: x := y‖ y := x results in x and y having
the same value; not in swapping their values.

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 4 / 30

Coarse-Grained Interleaving Semantics for SCIMP1
Commands

Skip, Assignment, Sequencing, Blocks, If Then Else, While unchanged

Need rules for ‖

(C1,m) −→ (C ′
1,m

′)

(C1‖C2,m) −→ (C ′
1‖C2,m

′)

(C1,m) −→ m′

(C1‖C2,m) −→ (C2,m
′)

(C2,m) −→ (C ′
2,m

′)

(C1‖C2,m) −→ (C1‖C ′
2,m

′)

(C2,m) −→ m′

(C1‖C2,m) −→ (C1,m
′)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 5 / 30

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q,Σ, δ, I)
where

Q set of states
Q finite or countably infinite

Σ set of labels (aka actions)
Σ finite or countably infinite

δ ⊆ Q × Σ× Q transition relation

I ⊆ Q initial states

Note: Write q
α−→ q′ for (q, α, q′) ∈ δ.

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 6 / 30

Example: Candy Machine

Q = {Start,Select,GetMarsBar,GetKitKatBar}
I = {Start}
Σ = {Pay,ChooseMarsBar,ChooseKitKatBar,TakeCandy}

δ =

(Start,Pay,Select)
(Select,ChooseMarsBar,GetMarsBar)
(Select,ChooseKitKatBar,GetKitKatBar)
(GetMarsBar,TakeCandy,Start)
(GetKitKatBar,TakeCandy,Start)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 7 / 30

Example: Candy Machine

�
 �	Start

?

Pay

�
 �	Select
�

�
�

�
�
�	

ChooseMarsBar

@
@
@
@
@
@R

ChooseKitKatBar

�
 �	GetMarsBar

TakeCandy

-

�
 �	GetKitKatBar

TakeCandy

�

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 8 / 30

Predecessors, Successors and Determinism

Let (Q,Σ, δ, I) be a labeled transition system.

In(q, α) = {q′|q′ α−→ q} In(q) =
⋃

α∈Σ In(q, α)

Out(q, α) = {q′|q α−→ q′} Out(q) =
⋃

α∈Σ Out(q, α)

A labeled tranistion system (Q,Σ, δ, I) is deterministic if

|I | ≤ 1 and |Out(q, α)| ≤ 1

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 9 / 30

Labeled Transition Systems vs Finite State Automata

LTS have no accepting states

Every FSA an LTS - just forget the accepting states

Set of states and actions may be countably infinite

May have infinite branching

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 10 / 30

Executions, Traces, and Runs

A partial execution in an LTS is a finite or infinite alternating
sequence of states and actions ρ = q0α1q1 . . . αnqn . . . such that

q0 ∈ I
qi−1

αi−→ qi for all i with qi in sequence

An execution is a maxial partial execution

A finite or infinite sequence of actions α1 . . . αn . . . is a trace if there
exist states q0 . . . qn . . . such that the sequence q0α1q1 . . . αnqn . . . is
a partial execution.

Let ρ = q0α1q1 . . . αnqn . . . be a partial execution. Then
trace(ρ) = α1 . . . αn

A finite or inifnite sequence of states q0 . . . qn . . . is a run if there exist
actions α1 . . . αn . . . such that the sequence q0α1q1 . . . αnqn . . . is a
partial execution.

Let ρ = q0α1q1 . . . αnqn . . . be a partial execution. Then
run(ρ) = q0 . . . qn

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 11 / 30

Example: Candy Machine

Partial execution:
ρ = Start ·Pay ·Select ·ChooseMarsBar ·GetMarsBar ·TakeCandy ·Start
Trace: trace(ρ) = Pay · ChooseMarsBar · TakeCandy
Run: run(ρ) = Start · Select · GetMarsBar · Start

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 12 / 30

Program Transition System

A Program Transition System is a triple (S,T , init)

S = (G,D,F , φ,R, ρ) is a first-order structure over signature
G = (V ,F , af ,R, ar), used to interpret expressions and conditionals

T is a finite set of conditional transitions of the form

g → (v1, . . . , vn) := (e1, . . . , en)

where vi ∈ V distinct, and ei term in G, for i = 1 . . . n

init initial condition asserted to be true at start of program

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 13 / 30

Example: Traffic Light

V = {Turn,NSC ,EWC}, F = {NS ,EW ,Red ,Yellow ,Green} (all arity 0),
R = {=}

NSG Turn = NS ∧ NSC = Red → NSC := Green
NSY Turn = NS ∧ NSC = Green → NSC := Yellow
NSR Turn = NS ∧ NSC = Yellow → (Turn,NSC) := (EW ,Red)
EWG Turn = EW ∧ EWC = Red → EWC := Green
EWY Turn = EW ∧ EWC = Green → EWC := Yellow
EWR Turn = EW ∧ EWC = Yellow → (Turn,EWC) := (NS ,Red)

init = (NSC = Red ∧ EWC = Red ∧ (Turn = NS ∨ Turn = EW)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 14 / 30

Mutual Exclusion (Attempt)

P1 :: m1 : while true do
m2 : p11(∗not in crit sect∗)
m3 : c1 := 0
m4 : wait(c2 = 1)
m5 : r1(∗in crit sect∗)
m6 : c1 := 1
m7 : od

P2 :: n1 : while true do
n2 : p21(∗not in crit sect∗)
n3 : c2 := 0
n4 : wait(c1 = 1)
n5 : r2(∗in crit sect∗)
n6 : c2 := 1
n7 : od

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 15 / 30

Mutual Exclusion PTS

V = {pc1, pc2, c1, c2}, F = {m1, . . . ,m6, n1, . . . , n6, 0, 1}

T = pc1 = m1 → pc1 := m2
pc1 = m2 → pc1 := m3
pc1 = m3 → (pc1, c1) := (m4, 0)

pc1 = m4 ∧ c2 = 1 to pc1 := m5
pc1 = m5 → pc1 := m6
pc1 = m6 → (pc1, c1) := (m1, 1)
pc2 = n1 → pc2 := n2
pc2 = n2 → pc2 := n3
pc2 = n3 → (pc2, c2) := (n4, 0)

pc2 = n4 ∧ c1 = 1 to pc2 := n5
pc2 = n5 → pc2 := n6
pc2 = n6 → (pc2, c2) := (n1, 1)

init = (pc1 = m1 ∧ pc2 = n1 ∧ c1 = 1 ∧ c2 = 1)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 16 / 30

Interpreting PTS as LTS

Let (S,T , init) be a program transition system. Assume V finite, D at
most countable.

Let Q = V → D, interpretted as all assingments of values to variables

Can restrict to mappings q where v and q(v) have same type

Let Σ = T

Let δ = {(q, g → (v1, . . . , vn) := (e1, . . . , en), q′) |
Mq(g)∧
(∀i ≤ n.q′(vi) = Tq(ei))∧
(∀v /∈ {v1, . . . , vn}. q′(v) = q(v))}

I = {q|Tq(init) = T}

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 17 / 30

Example: Traffic Light

V = {Turn,NSC ,EWC}, F = {NS ,EW ,Red ,Yellow ,Green} (all arity 0),
R = {=}

NSG Turn = NS ∧ NSC = Red → NSC := Green
NSY NSC = Green → NSC := Yellow
NSR NSC = Yellow → (Turn,NSC) := (EW ,Red)
EWG Turn = EW ∧ EWC = Red → EWC := Green
EWY EWC = Green → EWC := Yellow
EWR EWC = Yellow → (Turn,EWC) := (NS ,Red)

init = (NSC = Red ∧ EWC = Red ∧ (Turn = NS ∨ Turn = EW)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 18 / 30

Example: Traffic Lights#
"

!

�
�
�
�

Turn = NS
NSC = Red
EWC = Red

B
B
BN

NSG

�
�
��EWR �
�
�
�

Turn = NS
NSC = Green
EWC = Red

?NSY�
�
�
�

Turn = NS
NSC = Yellow
EWC = Red

�
�
�

NSR

�
�
�
�

Turn = EW
NSC = Red
EWC = Yellow

6

EWR�
�
�
�

Turn = EW
NSC = Red
EWC = Green

B
B
BM EWG#
"

!

�
�
�
�

Turn = EW
NSC = Red
EWC = Red

�
�
�
�2RG�

�
�
�2RY

�
�
�
�2GY

�
�
�
�2YY

�
�
�
�2YG �
�
�
�2GG

���
EWY

HHY
EWR

�EWR

�EWR

���EWY

I

EWY

�
�
�
�1GG �
�
�
�1GY

�
�
�
�1YY

�
�
�
�1YG

�
�
�
�1YR�

�
�
�1GR
��*

NSY HHj
NSR

-NSR

-NSR
��	

NSY

R

NSY

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 19 / 30

Examples (cont)

LTS for traffic light has 3× 3× 2 = 18 possible well typed states

Is is possible to reach a state where NSC 6= Red ∧ EWC 6= Red from
an initial state?
If so, what sequence of actions allows this?
Do all the immediate predecessors of a state where
NSC = Green ∨ EWC = Green satisfy NSC = Red ∧ EWC = Red?
If not, are any of those offend states reachable from and initial state,
and if so, how?

LTS for Mutual Exclusion has 6× 6× 2× 2 = 144 posible well-tped
states.

Is is possible to reach a state where pc1 = m5 ∧ pc2 = n5?

How can we state these questions rigorously, formally?

Can we find an algorithm to answer these types of questions?

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 20 / 30

Linear Temporal Logic - Syntax

ϕ ::= p|(ϕ)| 6 ϕ|ϕ ∧ ϕ′|ϕ ∨ ϕ′

| ◦ϕ|ϕUϕ′|ϕVϕ′|�ϕ|♦ϕ

p – a propostion over state variables

◦ϕ – “next”

ϕUϕ′ – “until”

ϕVϕ′ – “releases”

�ϕ – “box”, “always”, “forever”

♦ϕ – “diamond”, “eventually”, “sometime”

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 21 / 30

LTL Semantics: The Idea

p - p

◦ϕ - ϕ

ϕU ψ - ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

ϕV ψ - ψ ψ ψ ψ ψ ψ ϕ, ψ

�ϕ - ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

♦ϕ - ϕ

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 22 / 30

Formal LTL Semantics

Given:

G = (V ,F , af ,R, ar) signature expressing state propositions

Q set of states,

M modeling function over Q and G: M(q, p) is true iff q models p.
Write q |= p.

σ = q0q1 . . . qn . . . infinite sequence of state from Q.

σi = qiqi+1 . . . qn . . . the i th tail of σ

Say σ models LTL formula ϕ, write σ |= ϕ as follows:

σ |= p iff q0 |= p

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ.

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ.

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 23 / 30

Formal LTL Semantics

σ |= ◦ϕ iff σ1 |= ϕ

σ |= ϕUψ iff for some k , σk |= ψ and for all i < k, σi |= ϕ

σ |= ϕVψ iff for some k , σk |= ϕ and for all i ≤ k , σi |= ψ,
or for all i , σi |= ψ.

σ |= �ϕ if for all i , σi |= ψ

σ |= ♦ϕ if for some i , σi |= ψ

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 24 / 30

Some Common Combinations

�♦p “p will hold infinitely often”

♦�p “p will continuously hold from some point on”

(�p)⇒ (�q) “if p happens infinitely often, then so does q

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 25 / 30

Some Equivalences

�(ϕ ∧ ψ) = (�ϕ) ∧ (�ψ)

♦(ϕ ∨ ψ) = (♦ϕ) ∨ (♦ψ)

�ϕ = FV ϕ
♦ϕ = TU ϕ
ϕV ψ = ¬((¬ϕ)U (¬ψ))

ϕU ψ = ¬((¬ϕ)V (¬ψ))

¬(♦ϕ) = �(¬ϕ)

¬(�ϕ) = ♦(¬ϕ)

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 26 / 30

Some More Eqivalences

�ϕ = ϕ ∧ ◦�ϕ
♦ϕ = ϕ ∨ ◦♦ϕ
ϕV ψ = (ϕ ∧ ψ) ∨ (ψ ∧ ◦(ϕV ψ))

ϕU ψ = ψ ∨ (ϕ ∧ ◦(ϕV ψ)

�, ♦, U , V may all be understood recursively, by what they state
about right now, and what they state about the future

Caution: � vs ♦, U vs V differ in there limit behavior

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 27 / 30

Traffic Light Example

Basic Behavior:

�((NSC = Red) ∨ (NSC = Green) ∨ (NSC = Yellow))

�((NSC = Red)⇒ ((NSC 6= Green) ∧ (NSC 6= Yellow))

Similarly for Green and Red

�(((NCS = Red) ∧ ◦(NCS 6= Red))⇒ ◦(NCS = Green))

Same as �((NCS = Red)⇒ ((NCS = Red)U (NCS = Green)))

�(((NCS = Green) ∧ ◦(NCS 6= Green))⇒ ◦(NCS = Yellow))

�(((NCS = Yellow) ∧ ◦(NCS 6= Yellow))⇒ ◦(NCS = Red))

Same for EWC

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 28 / 30

Traffic Light Example

Basic Safety

�((NSC = Red) ∨ (EWC = Red)

�(((NSC = Red) ∧ (EWC = Red))V
((NSC 6= Green)⇒ (◦(NSC = Green))))

Basic Liveness

(♦(NSC = Red)) ∧ (♦(NSC = Green)) ∧ (♦(NSC = Yellow))

(♦(EWC = Red)) ∧ (♦(EWC = Green)) ∧ (♦(EWC = Yellow))

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 29 / 30

Proof System for LTL

First step: View ϕV ψ as moacro: ϕV ψ = ¬((¬ϕ)U (¬ψ))

Second Step: Extend all rules of Prop Logic to LTL

Third Step: Add one more rule:
ϕ

Gen
�ϕ

Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)

A1: �ϕ⇔ ¬(♦(¬ϕ))
A2: �(ϕ⇒ ψ)⇒ (�ϕ⇒ �ψ)
A3: �ϕ⇒ (ϕ ∧ ◦�ϕ)
A4: ◦¬ϕ⇔ ¬ ◦ ϕ
A5: ◦(ϕ⇒ ψ)⇒ (◦ϕ⇒ ◦ψ)
A6: �(ϕ⇒ ◦ϕ)⇒ (ϕ⇒ �ϕ)
A7: ϕU ψ ⇔ (ϕ ∧ ψ) ∨ (ϕ ∧ ◦(ϕV ψ)
A8: ϕU ψ ⇒ ♦ψ

Result: a sound and relatively complete proof system

Can implement in Isabelle in much the same way as we did Hoare
Logic

Elsa L Gunter CS477 Formal Software Dev Methods April 1, 2020 30 / 30

