CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

March 11, 2020

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 1/15

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Demo: Hoare_ex

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 2/

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine

o Will this always work?
@ Why not automate the whole process?
o Can't (always) calculate needed loop invariants

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine
o Will this always work?

@ Why not automate the whole process?

o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine

o Will this always work?
@ Why not automate the whole process?

o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application

@ Can we automate all but this?

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine
o Will this always work?
@ Why not automate the whole process?
o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application
@ Can we automate all but this?
@ Yes! But how?

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine
o Will this always work?
@ Why not automate the whole process?
o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application
@ Can we automate all but this?
@ Yes! But how?

1. Annotate all while loops with needed invariants

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

@ Have seen in Isabelle that much of proving a Hoare triple is routine
o Will this always work?
@ Why not automate the whole process?
o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application
@ Can we automate all but this?
@ Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?
o Can't (always) calculate needed loop invariants
o Can't (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?
Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3/15

Annotated Simple Imperative Language

e Give verification conditions for an annotated version of our
simple imperative language
e Add a presumed invariant to each while loop

(command) ::= (variable) := (term)

| (command); ...; (command)

| if (statement) then (command) else (command)
| while (statement) inv (statement) do (command)

Example: whiley < ninvx =y *xy
do
x = (2 xy) + 1
y =y +1
od

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 4 /15

HOL Type for Deep Part of Embedding

datatype ’data annotated_command =
AnnAssignCom "var_name" "’data exp"
(infix ":=" 110)
| AnnSeqCom "’data annotated_command"
"’data annotated_command"
(infixl ";;" 109)
| AnnCondCom "’data bool_exp"
"’data annotated_command"
"’data annotated_command"
("If _/ Then _/ Else _/ Fi" [70,70,70]170)
| AnnWhileCom "’data bool_exp" "’data annotated_command"
("While -/ Inv ./ Do _/ 04" [70,70]70)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 5/15

Hoare Logic for Annotated Programs

Assingment Rule Rule of Consequence
Plerdx = egry o2 1PBClO) @2@
e/x|} x = e
{Pl C{Ql
Sequencing Rule If Then Else Rule
{Plr G {Q} {QF GARE {iIPAB} GAQRE {PA-Bl G{Q}
{IP} Gi; G AR} {|P|} if B then Ci else C —2 {|Ql}
While Rule
{iIP A B[C{P[}

{|P[} while B inv P do C {|{P A —=BJ}

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 6 /15

Defining Hoare Logic Rules

inductive ann_valid :: "’data bool_exp =

’data annotated_command =-’data bool_exp =-bool"
4_pA_0" [60,60,60160)where
AnnAssignmentAxiom:"{ (P[x<«=e]) }F(x:=e) {P}" |
AnnSequenceRule:

"[{PkC {Qlk; {qQkc’ 4RFI=APR(C;;C){R[}" |
AnnRuleOfConsequence:

"CIE® [—1 P?) ; AP i@’ F; I1E@ [—]1 @ T
=-{Pic{Qr" |

AnnIfThenElseRule:

"[4 (P [A] B)BCdQR; 4 (PIAICI-IB)) FC’4QRT
=—{P}(If B Then C Else C’ Fi){QB}" |
AnnWhileRule:

"[4 (P [A] B) BC{P[]

={P}(While B Inv P Do C 0d){ (P [A] ([-1B))["

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 7/15

Relation Between Two Languages

@ Hoare Logic for Simple Imperative Programs and Hoare Logic for
Annotated Programs almost the same

@ What it precise relationship?

@ First need precise relation between the two languages

strip(v:=e) = vi=e
strip(C1 ; G) = strip(Gy) ; strip(G)
strip(if B then C; else G, fi) =
if B then strip(Cy) else strip((,) fi
strip(while B inv P do C od) = while B do strip(C) od

@ We recursively remove all invariant annotations from all while loops

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 8/15

Relation Between Two Hoare Logics

For all pre- and post-conditions P and Q, and annotated programs C, if

{Pl C{l@

}, then {P} strip(C) {Q}.

Proof.

(Sketch) Use rule induction on proof of {|P[} C {|Q[}; in case of While
Rule, erase invariant O

v

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 9/15

Relation Between Two Hoare Logics

For all pre- and post-conditions P and Q, and unannotated programs C, if
{P} C {Q}, then there exists an annotated program S such that
C = strip(S) and {|P[} S {|Q[}.

(Sketch) Use rule induction on proof of {P} C {Q}; in case of While
Rule, add invariant from precondition as invariant to command. O

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 10 / 15

Weakest Precondition

Question: Given post-condition @, and annotated program C, what is the
most general pre-condition P such that {|P[} C {Q]}?

Answer: Weakest Precondition

wp (x :=e€) Q = Q[x < €]

wp (Cl; C2) Q = Wp Cl (Wp C2 Q)

wp (if B then C; else G, fi) Q =
(BA(wp G Q) V((=B) A (wp & Q))

wp (while B inv Pdo C od) Q =P

Assumes, without verifying, that P is the correct invariant

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 11 /15

Weakest Justification

Weakest in weakest precondition means any other valid precondition
implies it:

For all annotated programs C, and pre- and post-conditions P and Q, if
{P} C{Q[} then P = wp C Q.

@ Proof somewhat complicated

@ Uses induction on the structure of C

@ In each case, want to assert triple proof must have used rule for that
construct (e.g. Sequence Rule for sequences)

o Can’t because of Rule Of Consequence

@ Must induct on proof (rule induction) - in each case

o Uses:

VCPQR. (P=Q)=(wpCP=wp CQ)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 12 /15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 /15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 /15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Question: How to calculate verification conditions?

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 /15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Question: How to calculate verification conditions?

veg (x :=e) Q = true

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Question: How to calculate verification conditions?

veg (x :=e) Q = true
veg (G &) Q@ = (veg G (wp G Q) A (veg & Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Question: How to calculate verification conditions?

veg (x :=e) Q = true
veg (G &) Q@ = (veg G (wp G Q) A (veg & Q)
vcg (if B then C else G £i) Q = (veg G Q) A (veg & Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {wp C Q[} C {Q[}?

Answer: Not always - need to check while-loop side-conditions —
verification conditions

Question: How to calculate verification conditions?

veg (x :=e) Q = true
veg (G &) Q@ = (veg G (wp G Q) A (veg & Q)
vcg (if B then G else G fi) Q = (veg G Q) A (veg G Q)
vcg (while B inv P do C od) Q =
((PAB)= (wp CP))A(vcg CP)A((PA(—B))= Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

Verification Condition Guarantees wp Precondition

veg C Q = {lwp C Q} C {IQ[} j

(Sketch)

@ Induct on structure of C
@ For each case, wind back as we did in specific examples:

e Assignment: wp C @ exactly what is needed for Assignment Axiom

e Sequence: Follows from inductive hypotheses, all elim, and modus
ponens

o If_Then_Else: Need to use Precondition Strengthening with each
branch of conditional; wp and inductive hypotheses give the needed
side conditions

o While: Need to use Postcondition Weakening, While Rule and
Precondition Strengthening

Ol

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 14 / 15

V.

Verification Condition Guarantees wp Precondition

(P = wp CQ)A(veg C Q)= {IP} C{Ql}

This amounts to a method for proving Hoare triple {P} C {Q}:
© Annotate program with loop invariants
@ Calculate wp C Q and vcg C Q (automated)
© Prove P=wp C @ and vcg C Q

Basic outline of interaction with Boogie: Human does 1, Boogie does 2,
Z3 / Simplify / Isabelle + human / ... does 3
For more infomation

@ http://research.microsoft.com/en-us/projects/boogie/

@ http://research.microsoft.com/en-us/um/people/moskal/
pdf/hol-boogie.pdf

@ http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/
library/HOL/HOL-Hoare/index.html

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 15 / 15

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/um/people/moskal/pdf/hol-boogie.pdf
http://research.microsoft.com/en-us/um/people/moskal/pdf/hol-boogie.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Hoare/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Hoare/index.html

	Verification Condition Generation

