
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

March 11, 2020

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 1 / 15

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Demo: Hoare ex

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 2 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants

Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Algortihm for Proving Hoare Triples?

Have seen in Isabelle that much of proving a Hoare triple is routine

Will this always work?

Why not automate the whole process?

Can’t (always) calculate needed loop invariants
Can’t (always) prove implications (side-conditions) in Rule of
Consequence application

Can we automate all but this?

Yes! But how?

1. Annotate all while loops with needed invariants

2. Use routine to “roll back” post-condition to weakest precondition,
gathering side-conditions as we go

2 called verification condition generation

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 3 / 15

Annotated Simple Imperative Language

Give verification conditions for an annotated version of our
simple imperative language

Add a presumed invariant to each while loop

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 inv 〈statement〉 do 〈command〉

Example: while y < n inv x = y ∗ y

do

x := (2 ∗ y) + 1;
y := y + 1

od

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 4 / 15

HOL Type for Deep Part of Embedding

datatype ’data annotated command =

AnnAssignCom "var name" "’data exp"

(infix ":=" 110)

| AnnSeqCom "’data annotated command"

"’data annotated command"

(infixl ";;" 109)

| AnnCondCom "’data bool exp"

"’data annotated command"

"’data annotated command"

("If / Then / Else / Fi" [70,70,70]70)

| AnnWhileCom "’data bool exp" "’data annotated_command"

("While / Inv / Do / Od" [70,70]70)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 5 / 15

Hoare Logic for Annotated Programs

Assingment Rule

{|P[e/x]|} x := e {|P|}

Rule of Consequence
P ⇒ P ′ {|P ′|} C {|Q ′|} Q ′ ⇒ Q

{|P|} C {|Q|}

Sequencing Rule
{|P|} C1 {|Q|} {|Q|} C2 {|R|}

{|P|} C1; C2 {|R|}

If Then Else Rule
{|P ∧ B|} C1 {|Q|} {|P ∧ ¬B|} C2 {|Q|}

{|P|} if B then C1 else C − 2 {|Q|}

While Rule
{|P ∧ B|} C {|P|}

{|P|} while B inv P do C {|P ∧ ¬B|}

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 6 / 15

Defining Hoare Logic Rules

inductive ann valid :: "’data bool exp ⇒
’data annotated command ⇒’data bool exp ⇒bool"

("{| |} {| |}" [60,60,60]60)where

AnnAssignmentAxiom:"{|(P[x⇐e])|}(x:=e) {|P|}" |

AnnSequenceRule:

"[[{|P|}C {|Q|}; {|Q|}C’ {|R|}]]=⇒{|P|}(C;;C’){|R|}" |

AnnRuleOfConsequence:

"[[||=(P [−→] P’) ; {|P’|}C{|Q’|}; ||=(Q’ [−→] Q)]]

=⇒{|P|}C{|Q|}" |

AnnIfThenElseRule:

"[[{|(P [∧] B)|}C{|Q|}; {|(P[∧]([¬]B))|}C’{|Q|}]]
=⇒{|P|}(If B Then C Else C’ Fi){|Q|}" |

AnnWhileRule:

"[[{|(P [∧] B)|}C{|P|}]]

=⇒{|P|}(While B Inv P Do C Od){|(P [∧] ([¬]B))|}"

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 7 / 15

Relation Between Two Languages

Hoare Logic for Simple Imperative Programs and Hoare Logic for
Annotated Programs almost the same

What it precise relationship?

First need precise relation between the two languages

Definition

strip(v := e) = v := e
strip(C1 ; C2) = strip(C1) ; strip(C2)
strip(if B then C1 else C2 fi) =

if B then strip(C1) else strip(C2) fi

strip(while B inv P do C od) = while B do strip(C) od

We recursively remove all invariant annotations from all while loops

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 8 / 15

Relation Between Two Hoare Logics

Theorem

For all pre- and post-conditions P and Q, and annotated programs C , if
{|P|} C {|Q|}, then {P} strip(C) {Q}.

Proof.

(Sketch) Use rule induction on proof of {|P|} C {|Q|}; in case of While
Rule, erase invariant

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 9 / 15

Relation Between Two Hoare Logics

Theorem

For all pre- and post-conditions P and Q, and unannotated programs C , if
{P} C {Q}, then there exists an annotated program S such that
C = strip(S) and {|P|} S {|Q|}.

Proof.

(Sketch) Use rule induction on proof of {P} C {Q}; in case of While
Rule, add invariant from precondition as invariant to command.

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 10 / 15

Weakest Precondition

Question: Given post-condition Q, and annotated program C , what is the
most general pre-condition P such that {|P|} C {|Q|}?

Answer: Weakest Precondition

Definition

wp (x := e) Q = Q[x ⇐ e]
wp (C1;C2) Q = wp C1 (wp C2 Q)
wp (if B then C1 else C2 fi) Q =

(B ∧ (wp C1 Q)) ∨ ((¬B) ∧ (wp C2 Q))
wp (while B inv P do C od) Q = P

Assumes, without verifying, that P is the correct invariant

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 11 / 15

Weakest Justification

Weakest in weakest precondition means any other valid precondition
implies it:

Theorem

For all annotated programs C , and pre- and post-conditions P and Q, if
{|P|} C {|Q|} then P ⇒ wp C Q.

Proof somewhat complicated

Uses induction on the structure of C

In each case, want to assert triple proof must have used rule for that
construct (e.g. Sequence Rule for sequences)

Can’t because of Rule Of Consequence

Must induct on proof (rule induction) - in each case

Uses:

Lemma

∀C P Q. (P ⇒ Q)⇒ (wp C P ⇒ wp C Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 12 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?

Answer: Not always - need to check while-loop side-conditions –
verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true

vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true

vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true

vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true

vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true
vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)

vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true
vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)

vcg (while B inv P do C od) Q =
((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

What About Precondition?

Question: Do we have {|wp C Q|} C {|Q|}?
Answer: Not always - need to check while-loop side-conditions –

verification conditions

Question: How to calculate verification conditions?

Definition

vcg (x := e) Q = true
vcg (C1;C2) Q = (vcg C1 (wp C2 Q)) ∧ (vcg C2 Q)
vcg (if B then C1 else C2 fi) Q = (vcg C1 Q) ∧ (vcg C2 Q)
vcg (while B inv P do C od) Q =

((P ∧ B)⇒ (wp C P)) ∧ (vcg C P) ∧ ((P ∧ (¬B))⇒ Q)

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 13 / 15

Verification Condition Guarantees wp Precondition

Theorem

vcg C Q ⇒ {|wp C Q|} C {|Q|}

Proof.

(Sketch)

Induct on structure of C

For each case, wind back as we did in specific examples:

Assignment: wp C Q exactly what is needed for Assignment Axiom
Sequence: Follows from inductive hypotheses, all elim, and modus
ponens
If Then Else: Need to use Precondition Strengthening with each
branch of conditional; wp and inductive hypotheses give the needed
side conditions
While: Need to use Postcondition Weakening, While Rule and
Precondition Strengthening

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 14 / 15

Verification Condition Guarantees wp Precondition

Corollary

((P ⇒ wp C Q) ∧ (vcg C Q))⇒ {|P|} C {|Q|}

This amounts to a method for proving Hoare triple {P} C {Q}:
1 Annotate program with loop invariants

2 Calculate wp C Q and vcg C Q (automated)

3 Prove P ⇒ wp C Q and vcg C Q

Basic outline of interaction with Boogie: Human does 1, Boogie does 2,
Z3 / Simplify / Isabelle + human / . . . does 3
For more infomation

http://research.microsoft.com/en-us/projects/boogie/

http://research.microsoft.com/en-us/um/people/moskal/

pdf/hol-boogie.pdf

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/

library/HOL/HOL-Hoare/index.html

Elsa L Gunter CS477 Formal Software Dev Methods March 11, 2020 15 / 15

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/um/people/moskal/pdf/hol-boogie.pdf
http://research.microsoft.com/en-us/um/people/moskal/pdf/hol-boogie.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Hoare/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Hoare/index.html

	Verification Condition Generation

