CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

March 6, 2020

Embedding logics in HOL

- Problem: How to define logics and their meaning in HOL?
- Two approaches: deep or shallow
- Shallow: use propositions of HOL as propositions of defined logic
- Example of shallow: Propositional Logic in HOL (just restrict the terms)
 - Can't always have such a simple inclusion
 - Reasoning easiest in "defined" logic when possible
 - Can't reason about defined logic this way, only in it.

Embedding logics in HOL

- Alternative Deep:
 - Terms and propositions: elements in data types,
 - Assignment: function from variables (names) to values
 - "Satisfies": function of assignment and proposition to booleans
 - Can always be done
 - More work to define, more work to use than shallow
 - More powerful, can reason about defined logic as well as in it
- Can combine two approaches

What is the Meaning of a Hoare Triple?

- Hoare triple $\{P\}$ C $\{Q\}$ means that
 - if C is run in a state S satisfying P, and C terminates
 - then C will end in a state S' satisfying Q
- Implies states S and S' are (can be viewed as) assignments of variables to values
- States are abstracted as functions from variables to values
- States are modeled as functions from variables to values

How to Define Hoare Logic in HOL?

- Deep embeeding always possible, more work
- Is shallow possible?
- Two parts: Code and conditions
- Shallowest possible:
 - Code is function from states to states
 - Expression is function from states to values
 - Boolean expression is function from states to booleans
 - Conditions are function from states to booleans, since boolean expressions occur in conditions
- Problem: Can't do case analysis on general type of functions from
- Can't do case analysis or induction on code
- Solution: go a bit deeper

Embedding Hoare Logic in HOL

- Recursive data type for Code (think BNF Grammar)
- Keep expressions, boolean expressions almost as before
- Expressions: functions from states to values
- Boolean expressions: functions from states to booleans
- Conditions: function from states to booleans (i.e. boolean expressions)
- Note: Constants, variables are expressions, so are functions from states to values
- What functions are they?

HOL Types for Shallow Part of Embedding

```
type_synonym var_name = "string"
type_synonym 'data state = "var_name ⇒'data"
type_synonym 'data exp = "'data state ⇒'data"
```

- We are parametrizing by 'data
- Can instantiate later with int of real, or role your own

HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- Constants:
 - definition k :: "'data \Rightarrow 'data exp" where "k c $\equiv \lambda$ s. c"
- Variables:

```
definition rev_app :: "var_name \Rightarrow'data exp" ("(\$)")
where "$ x \equiv \lambdas. s x"
```

• We will add more when we specify a specific type of data

Boolean Connectives

Boolean Expressions

• Can be complete about boolean

```
type_synonym 'data bool_exp = "'data state ⇒bool"
definition Bool :: "bool \Rightarrow'data bool_exp" where
"Bool b s = b"
definition true_b:: "'data bool_exp" where
"true_b \equiv \lambdas. True"
definition false_b:: "'data bool_exp" where
"false_b \equiv \lambdas. False"
```

• We want the usual logical connectives no matter what type data has: definition and_b

```
::"'data bool_exp \Rightarrow'data bool_exp \Rightarrow'data bool_exp"
(infix "[\land]" 100) where
"(a [\wedge] b) \equiv \lambdas. ((a s) \wedge(b s))"
definition and_b
::"'data bool_exp \Rightarrow'data bool_exp \Rightarrow'data bool_exp"
(infix "[\lor]" 100) where
"(a [\lor] b) \equiv \lambdas. ((a s) \lor(b s))"
```

Meaning of Satisfaction

• Need to be able to ask when a state satisfies, or models a proposition:

```
definition models :: "'data state ⇒'data bool_exp ⇒bool"
(infix "⊨" 90)
where
"(s⊨b) ≡b s"
definition bvalid :: "'data bool_exp ⇒bool" (" |=")
where
" |⊨b ≡(∀s. b s)"
```

Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:

```
lemma byalid and bI:
"\llbracket \ |\models P; \ |\models Q \rrbracket \implies |\models (P \ [\land] \ Q)"
lemma bvalid_and_bE [elim]:
"\llbracket \models (P \ \llbracket \land \rrbracket \ Q); \ \llbracket \models P; \ \models Q \rrbracket \ \Longrightarrow R \rrbracket \ \Longrightarrow R"
lemma bvalid_or_bLI [intro]: " \modelsP \Longrightarrow \models(P [\lor] Q)"
lemma bvalid_or_bRI [intro]: " \modelsQ \Longrightarrow \models(P [\lor] Q)"
```

```
How to Handle Substitution
Use the shallowness
definition substitute :: "('data state \Rightarrow 'a) \Rightarrow var_name \Rightarrow
      ("_/[_/\&__ /]" [120,120,120]60)
"p[x\leftarrow e] \equiv \lambda s. p(\lambda v. if v = x then e(s) else s(v))"
Prove this satisfies all equations for substitution:
lemma same_var_subst: "$x[x = e] = e"
lemma plus_e_subst:
 "(a [+] b) [x \leftarrow e] = (a[x \leftarrow e])[+](b[x \leftarrow e])"
lemma less_b_subst:
 "(a [<] b)[x \leftarrow e] = (a[x \leftarrow e])[<](b[x \leftarrow e])"
```

datatype command = AssignCom "var_name" "'data exp" (infix "::=" 61) | SeqCom "command" "command" (infixl ";;" 60) | CondCom "'data bool_exp" "command" "command" ("IF _/ THEN _/ ELSE _/ FI" [0,0,0]60) | WhileCom "'data bool_exp" "command" ("WHILE _/ DO _/ OD" [0,0]60)

Defining Hoare Logic Rules

```
inductive valid :: "'data bool_exp ⇒command ⇒'data bool_exp
⇒'data bool"
("{\{\_\}}_{\{\_\}}" [120,120,120]60) where
AssignmentAxiom:
"{\{(P[x \leftarrow e])\}}(x::=e) {\{P\}}" |
SequenceRule:
"[{{P}}C {{Q}}; {{Q}}C' {{R}}]
\Longrightarrow{{P}}(C;C'){{R}}" |
RuleOfConsequence:
"[[|\models(P [\longrightarrow] P') ; \{\{P'\}\}C\{\{Q'\}\}; |\models(Q' [\longrightarrow] Q)]]
\Longrightarrow{{P}}C{{Q}}" |
IfThenElseRule:
"[{(P [\land] B)}\c{\{Q\}}; {\{(P[\land]([\neg]B))\}}\c'{\{Q\}}]]
\Longrightarrow{{P}}(IF B THEN C ELSE C' FI){{Q}}" |
WhileRule:
"[{{(P [\] B)}}C{{P}}]]
  ⇒{{P}}(WHILE B DO C OD){{(P [∧] ([¬]B)□)}}⁴

Fisa I Gunter (S477 Formal Software Dev Methods
```

Using Shallow Part of Embedding

HOL Type for Deep Part of Embedding

- Need to fix a type of data.
- Will fix it as int:

type_synonym data = "int"

- Need to lift constants, variables, arithmetic operators, and predicates to functions over states
- Already have constants (via k) and variables (via \$).
- Arithmetic operations:

```
definition plus_e :: "exp \Rightarrowexp" (infixl "[+]" 150)
where "(p [+] q) \equiv \lambdas. (p s + (q s))"
```

Example: $x \times x + (2 \times x + 1)$ becomes

"\$''x'' [X] \$''x'' [+] k 2 [X] \$''x'' [+] k 1)"

Using Shallow Part of Embedding

• Arithmetic relations:

```
definition less_b :: "exp \Rightarrowexp \Rightarrow'data bool_exp"
(infix "[<]" 140) where "(a [<] b)s \equiv(a s) < (b s)"
```

Boolean operators:

Example: $x < 0 \land y \neq z$ becomes

```
"$''x'' [<] k 0 [\lambda] [\eta]($''y'' [=] $''z'')"
```

Annotated Simple Imperative Language

- We will give verification conditions for an annotated version of our simple imperative language
- Add a presumed invariant to each while loop

```
\langle command \rangle ::= \langle variable \rangle := \langle term \rangle
  ⟨command⟩; ...; ⟨command⟩
  if \('datastatement\) then \(\command\) else \(\command\)
 while ('datastatement) inv ('datastatement) do (command)
```

Hoare Logic for Annotated Programs $\frac{Assingment \ Rule}{\{ |P[e/x] |\} \ x \ := \ e \ \{ |P| \} } \qquad \frac{P \Rightarrow P' \quad \{ |P'| \} \ C \ \{ |Q'| \} \quad Q' \Rightarrow Q}{\{ |P| \} \ C \ \{ |Q| \} }$ Sequencing Rule $\frac{\{ |P| \} \ C_1 \ \{ |Q| \} \quad \{ |Q| \} \ C_2 \ \{ |R| \} \}}{\{ |P| \} \ C_1 \ \{ |Q| \} \quad \{ |P| \land B \} \ C_2 \ \{ |Q| \} }$ While Rule $\frac{\{ |P \land B \} \ C \ \{ |P| \} \}}{\{ |P| \} \ while \ B \ inv \ P \ do \ C \ \{ |P| \land \neg B \} \}}$

DEMO