

How to Define Hoare Logic in HOL?

- Deep embeeding always possible, more work
- Is shallow possible?
- Two parts: Code and conditions
- Shallowest possible:
- Code is function from states to states
- Expression is function from states to values
- Boolean expression is function from states to booleans
- Conditions are function from states to booleans, since boolean expressions occur in conditions
- Problem: Can't do case analysis on general type of functions from states to states
- Can't do case analysis or induction on code
- Solution: go a bit deeper

Embedding logics in HOL

- Problem: How to define logics and their meaning in HOL?
- Two approaches: deep or shallow
- Shallow: use propositions of HOL as propositions of defined logic
- Example of shallow: Propositional Logic in HOL (just restrict the terms)
- Can't always have such a simple inclusion
- Reasoning easiest in "defined" logic when possible
- Can't reason about defined logic this way, only in it.
- Hoare triple $\{P\} \subset\{Q\}$ means that
- if C is run in a state S satisfying P, and C terminates
- then C will end in a state S^{\prime} satisfying Q
- Implies states S and S^{\prime} are (can be viewed as) assignments of variables to values
- States are abstracted as functions from variables to values
- States are modeled as functions from variables to values

Embedding Hoare Logic in HOL

- Recursive data type for Code (think BNF Grammar)
- Keep expressions, boolean expressions almost as before
- Expressions: functions from states to values
- Boolean expressions: functions from states to booleans
- Conditions: function from states to booleans (i.e. boolean expressions)
- Note: Constants, variables are expressions, so are functions from states to values
- What functions are they?

HOL Types for Shallow Part of Embedding
type_synonym var_name = "string"
type_synonym 'data state = "var_name \Rightarrow 'data"
type_synonym 'data exp = "'data state \Rightarrow 'data"

- We are parametrizing by 'data
- Can instantiate later with int of real, or role your own

Boolean Expressions

- Can be complete about boolean
type_synonym 'data bool_exp $=$ "'data state \Rightarrow bool"
definition Bool :: "bool \Rightarrow 'data bool_exp" where
"Bool b s = b"
definition true_b:: "'data bool_exp" where
"true_b $\equiv \lambda$ s. True"
definition false_b:: "'data bool_exp" where
"false_b $\equiv \lambda \mathrm{s}$. False"

Meaning of Satisfaction

- Need to be able to ask when a state satisfies, or models a proposition:

```
definition models :: "'data state #'data bool_exp =>bool"
(infix " =" 90)
where
"(s\modelsb) \equivb s"
definition bvalid :: "'data bool_exp = bool" ("|=")
where
"|=b \equiv(\foralls. b s)"
```


HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- Constants:
definition $\mathrm{k}::$ "'data \Rightarrow 'data exp" where "k c $\equiv \lambda \mathrm{s} . \mathrm{c}$ "
- Variables:
definition rev_app :: "var_name \Rightarrow 'data exp" ("(\$)") where "\$ x $\equiv \lambda \mathrm{s} . \mathrm{s} \mathrm{x} "$
- We will add more when we specify a specific type of data

Boolean Connectives

- We want the usual logical connectives no matter what type data has: definition and_b
::"'data bool_exp \Rightarrow 'data bool_exp \Rightarrow 'data bool_exp"
(infix "[^]" 100) where
" $(\mathrm{a}[\wedge] \mathrm{b}) \equiv \lambda \mathrm{s} .((\mathrm{a} \mathrm{s}) \wedge(\mathrm{b} \mathrm{s})) "$
definition and_b
::"'data bool_exp \Rightarrow 'data bool_exp \Rightarrow 'data bool_exp"
(infix "[V]" 100) where
" (a [V] b) $\equiv \lambda \mathrm{s} .((\mathrm{a}$ s) $\vee(\mathrm{b}$ s))"

Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:
lemma bvalid_and_bI:
" $\mathbb{L}\|=P ;\| Q \rrbracket \Longrightarrow \|=(P[\wedge] Q) "$
lemma bvalid_and_bE [elim]:
" $\mathbb{I}\|=(\mathrm{P} \quad[\wedge] \mathrm{Q}) ; \mathbb{I}\| \mathrm{P} ; \quad \| \mathrm{Q} \rrbracket \Longrightarrow \mathrm{R} \rrbracket \Longrightarrow \mathrm{R} "$
lemma bvalid_or_bLI [intro]: " $\Vdash \mathrm{P} \Longrightarrow \|=(\mathrm{P}[\mathrm{V}] \mathrm{Q})$ "
lemma bvalid_or_bRI [intro]: " $\|=\mathrm{Q} \Longrightarrow\|=(\mathrm{P}[\mathrm{V}] \mathrm{Q}) "$

How to Handle Substitution

```
Use the shallowness
definition substitute :: "('data state }=>\mathrm{ ' 'a) # var_name }
    ("_/[_/&_ /]" [120,120,120]60)
where
"p[x\Leftarrow e] \equiv\lambda s. p(\lambda v. if v = x then e(s) else s(v))"
```

Prove this satisfies all equations for substitution：
lemma same＿var＿subst：＂\＄x［xe e］＝e＂
lemma diff＿var＿subst：$" \llbracket x \neq y \rrbracket \Longrightarrow \$ y[x \Leftarrow e]=\$ y "$ lemma plus＿e＿subst：
＂$(\mathrm{a}[+] \mathrm{b})[\mathrm{x} \Leftarrow \mathrm{e}]=(\mathrm{a}[\mathrm{x} \Leftarrow \mathrm{e}])[+](\mathrm{b}[\mathrm{x} \Leftarrow \mathrm{e}]) \mathrm{C}$
lemma less＿b＿subst：
＂$(\mathrm{a}[<] \mathrm{b})[\mathrm{x} \Leftarrow \mathrm{e}]=(\mathrm{a}[\mathrm{x} \Leftarrow \mathrm{e}])[<](\mathrm{b}[\mathrm{x} \Leftarrow \mathrm{e}]){ }^{\prime}$
（infix＂：：＝＂61）
AssignCom＂var＿name＂＂＇data exp＂
（infixl＂；；＂60）
｜SeqCom＂command＂＂command＂（infixl＂
｜CondCom＂＇data bool＿exp＂＂command＂＂command
（＂IF＿／THEN＿／ELSE＿／FI＂［0，0，0］60）
｜WhileCom＂＇data bool＿exp＂＂command＂ （＂WHILE＿／DO＿／OD＂$[0,0] 60$ ）

HOL Type for Deep Part of Embedding

datatype command $=$

Defining Hoare Logic Rules

inductive valid ：：＂＇data bool＿exp \Rightarrow command \Rightarrow＇data bool＿exp \Rightarrow＇data bool＂
（＂\｛\｛＿\}\}_\{\{_\}\}" [120,120,120]60)where
AssignmentAxiom：
＂\｛\｛（P［xたe］）\}\}(x::=e) \{\{P\}\}" |
SequenceRule：
＂ $\mathbb{\{ \{ \{ P \} \} C}\{\{Q\}\} ;\{\{Q\}\} C^{\prime}\{\{R\}\} \rrbracket$
$\left.\Longrightarrow\{\{P\}\}\left(C ; C^{\prime}\right)\{\{R\}\}\right\}^{\prime \prime}$
RuleOfConsequence：
$" \mathbb{I}\left\|=\left(P[\longrightarrow] P^{\prime}\right) ;\left\{\left\{P^{\prime}\right\}\right\} C\left\{\left\{Q^{\prime}\right\}\right\} ;\right\|=\left(Q^{\prime} \quad[\longrightarrow] Q\right) \mathbb{D}$
$\Longrightarrow\{\{P\}\} C\{\{Q\}\}{ }^{\prime \prime}$
IfThenElseRule：
＂ $\mathbb{L}\{\{(P \quad[\wedge] B)\}\} C\{\{Q\}\} ;\{\{(P[\wedge]([\neg] B))\}\} C^{\prime}\{\{Q\}\} \rrbracket$
$\Longrightarrow\{\{\mathrm{P}\}\}\left(\mathrm{IF}\right.$ B THEN C ELSE C＇FI）$\{\{\mathrm{Q}\}\}{ }^{\prime \prime}$｜
WhileRule：
＂ $\mathbb{K}\{\{(\mathrm{P}[\wedge] \mathrm{B})\}\} \mathrm{C}\{\{\mathrm{P}\}\} \rrbracket$
 Elsa L Gunter

Using Shallow Part of Embedding

－Arithmetic relations：
definition less＿b ：：＂exp $\Rightarrow \exp \Rightarrow$＇data bool＿exp＂
（infix＂［＜］＂140）where＂（a［＜］b）s \equiv（a s）＜（b s）＂
－Boolean operators：

Example：$x<0 \wedge y \neq z$ becomes
＂\＄＇＇x＇，［＜］k 0 ［ \wedge［［ ］（\＄＇＇y＇，［＝］\＄＇＇z＇＇）＂

Using Shallow Part of Embedding

－Need to fix a type of data．
－Will fix it as int：
type＿synonym data＝＂int＂
－Need to lift constants，variables，arithmetic operators，and predicates to functions over states
－Already have constants（via k）and variables（via \＄）．
－Arithmetic operations：
definition plus＿e ：：＂exp $\Rightarrow \exp \Rightarrow \exp "(i n f i x l$＂［＋］＂150） where＂（p［＋］q）$\equiv \lambda \mathrm{s}$ ．（p s＋（q s））＂

Example：$x \times x+(2 \times x+1)$ becomes

```
"$''x'' [x] $''x'' [+] k 2 [x] $''x'' [+] k 1)"
```


Annotated Simple Imperative Language

－We will give verification conditions for an annotated version of our simple imperative language
－Add a presumed invariant to each while loop
\langle command $\rangle::=\langle$ variable $\rangle:=\langle$ term \rangle
｜〈command〉；．．．；〈command〉
｜if \langle＇datastatement \rangle then \langle command \rangle else \langle command \rangle
｜while \langle＇datastatement \rangle inv \langle＇datastatement \rangle do \langle command \rangle

Hoare Logic for Annotated Programs

$$
\begin{aligned}
& \frac{\text { Assingment Rule }}{\{\mid P[e / x]\} \times:=e\{P \mid\}} \quad \frac{\begin{array}{c}
\text { Rule of Consequence }
\end{array}}{\left.P \Rightarrow P^{\prime}\left\{\mid P^{\prime}\right\} \subset\left\{Q^{\prime}\right\}\right\} \quad Q^{\prime} \Rightarrow Q} \\
& \text { Sequencing Rule If Then Else Rule } \\
& \frac{\left.\{P\}\} C_{1}\{Q\}\right\}\{Q\} C_{2}\{\mid R\}}{\{P\} C_{1} ; C_{2}\{R\}} \quad \frac{\left.\{P \wedge B\} C_{1}\{Q\}\right\}\{P \wedge \neg B \mid\} C_{2}\{\mid Q\}}{\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
\end{aligned}
$$

While Rule
$\{|P \wedge B|\} C\{|P|\}$
$\{|P|\}$ while B inv P do $C\{|P \wedge \neg B|\}$

