CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

February 27, 2020

Floyd-Hoare Logic

- Also called Axiomatic Semantics
- Based on formal logic (first order predicate calculus)
- Logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
- Ideas applicable quite broadly

Floyd-Hoare Logic

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution

Floyd-Hoare Logic

- Goal: Derive statements of form

$$
\{P\} \subset\{Q\}
$$

- P, Q logical statements about state, P precondition, Q postcondition, C program
- Example:

$$
\{x=1\} x:=x+1\{x=2\}
$$

Floyd-Hoare Logic

- Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

$$
\{P\} \subset\{Q\}
$$

where C is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs

Partial vs Total Correctness

- An expression $\{P\} \subset\{Q\}$ is a partial correctness statement
- For total correctness must also prove that C terminates (i.e. doesnt run forever)
- Written: $[P] C[Q]$
- Will only consider partial correctness here

Simple Imperative Language

－We will give rules for simple imperative language
\langle command $\rangle::=\langle$ variable $\rangle:=\langle$ term \rangle
｜〈command〉；．．．；〈command〉
if \langle statement \rangle then \langle command \rangle else \langle command \rangle while \langle statement \rangle do \langle command \rangle
－Could add more features，like for－loops

Substitution

- Notation: $P[e / v]$ (sometimes $P[v \rightarrow e]$)
- Meaning: Replace every v in P by e
- Example:

$$
(x+2)[y-1 / x]=((y-1)+2)
$$

The Assingment Rule

$$
\overline{\{P[e / x]\} \times:=e\{P\}}
$$

Example:

$$
\{?\}:=y\{x=2\}
$$

The Assingment Rule

$$
\overline{\{P[e / x]\} \times:=e\{P\}}
$$

Example:

$$
\{\square=2\} x:=y\{x=2\}
$$

The Assingment Rule

$$
\overline{\{P[e / x]\} \times:=e\{P\}}
$$

Example:

$$
\{y=2\} x:=y\{x=2\}
$$

The Assingment Rule

$$
\overline{\{P[e / x]\} x:=e\{P\}}
$$

Examples:

$$
\begin{aligned}
& \overline{\{y=2\} x:=y\{x=2\}} \\
& \overline{\{y=2\} x:=2\{y=x\}} \\
& \overline{\{x+1=n+1\} \times:=x+1\{x=n+1\}} \\
& \overline{\{2=2\} \times:=2\{x=2\}}
\end{aligned}
$$

The Assignment Rule - Your Turn

- What is the weakest precondition of

$$
x:=x+y\{x+y=w x\} ?
$$

$$
\begin{gathered}
? \\
x:=x+y \\
\{x+y=w x\}
\end{gathered}
$$

The Assignment Rule - Your Turn

- What is the weakest precondition of

$$
x:=x+y\{x+y=w x\} ?
$$

$$
\{(x+y)+y=w(x+y)\}
$$

$$
x:=x+y
$$

$$
\{x+y=w x\}
$$

Precondition Strengthening

$$
\frac{\left(P \Rightarrow P^{\prime}\right) \quad\left\{P^{\prime}\right\} \subset\{Q\}}{\{P\} C\{Q\}}
$$

- Meaning: If we can show that P implies P^{\prime} (i.e. $\left(P \Rightarrow P^{\prime}\right)$ and we can show that $\{P\} \subset\{Q\}$, then we know that $\{P\} \subset\{Q\}$
- P is stronger than P^{\prime} means $P \Rightarrow P^{\prime}$

Precondition Strengthening

- Examples:

$$
\begin{gathered}
\frac{x=3 \Rightarrow x<7 \quad\{x<7\} x:=x+3\{x<10\}}{\{x=3\} x:=x+3\{x<10\}} \\
\frac{\text { True } \Rightarrow(2=2) \quad\{2=2\} x:=2\{x=2\}}{\{\text { True }\} x:=2\{x=2\}} \\
\frac{x=n \Rightarrow x+1=n+1 \quad\{x+1=n+1\} x:=x+1\{x=n+1\}}{}\{x=n\} x:=x+1\{x=n+1\}
\end{gathered}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \wedge x<5\} \times:=x * x\{x<25\}}{\{x=3\} x:=x * x\{x<25\}} \\
\frac{\{x=3\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} \times:=x * x\{x<25\}} \\
\frac{\{x * x<25\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} \times:=x * x\{x<25\}}
\end{gathered}
$$

Which Inferences Are Correct?

$$
\begin{aligned}
& \frac{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x * x\{x<25\}} \text { YES } \\
& \frac{\{x=3\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}} \\
& \frac{\{x * x<25\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}
\end{aligned}
$$

Which Inferences Are Correct?

$$
\begin{aligned}
& \frac{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x * x\{x<25\}} \text { YES } \\
& \frac{\{x=3\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}} N O \\
& \frac{\{x * x<25\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}
\end{aligned}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x * x\{x<25\}} \text { YES } \\
\frac{\{x=3\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}} \text { NO } \\
\frac{\{x * x<25\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}} \text { YES }
\end{gathered}
$$

Post Condition Weakening

$$
\frac{\{P\} \subset\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} \subset\{Q\}}
$$

- Example:

$$
\frac{\{x+y=5\} x:=x+y\{x=5\} \quad(x=5) \Rightarrow(x<10)}{\{x+y=5\} x:=x+y\{x<10\}}
$$

Rule of Consequence

$$
\frac{P \Rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} \subset\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} \subset\{Q\}}
$$

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses $P \Rightarrow P$ and $Q \Rightarrow Q$

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

- Example:

$$
\begin{gathered}
\{z=z \wedge z=z\} x:=z\{x=z \wedge z=z\} \\
\{x=z \wedge z=z\} y:=z\{x=z \wedge y=z\} \\
\hline\{z=z \wedge z=z\} x:=z ; y:=z\{x=z \wedge y=z\}
\end{gathered}
$$

If Then Else

$$
\frac{\{P \wedge B\} C_{1}\{Q\} \quad\{P \wedge \neg B\} C_{2}\{Q\}}{\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
$$

- Example:
$\{y=a\}$ if $x<0$ then $y:=y-x$ else $y:=y+x\{y=a+|x|\}$
By If_Then_Else Rule suffices to show:
- (1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$ and
-(4) $\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}$

(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$

$$
\begin{aligned}
& \text { (3) }(y=a \wedge x<0) \Rightarrow(y-x=a+|x|) \\
& \text { (2) }\{y-x=a+|x|\} y:=y-x\{y=a+|x|\} \\
& \hline \text { (1) }\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}
\end{aligned}
$$

- (1) reduces to (2) and (3) by Precondition Strengthening
- (2) instance of Assignment Axiom
- (3) holds since $x<0 \Rightarrow|x|=-x$

(4) $\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}$

$$
\begin{aligned}
& \text { (6) } \quad(y=a \wedge \neg(x<0)) \Rightarrow(y+x=a+|x|) \\
& \text { (5) }\{y+x=a+|x|\} y:=y+x\{y=a+\mid x\} \\
& \hline \text { (4) }\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}
\end{aligned}
$$

- (4) reduces to (5) and (6) by Precondition Strengthening
- (5) Follows from Assignment Axiom
-(6) since $\neg(x<0) \Rightarrow|x|=x$

If Then Else

(1) $\{y=a \wedge x<0\} \quad y:=y-x\{y=a+|x|\}$
(4) $\{y=a \wedge \neg(x<0)\} \quad y:=y+x\{y=a+|x|\}$
$\{y=a\}$ if $x<0$ then $y:=y-x$ else $y:=y+x\{y=a+|x|\}$
by the If_Then_Else Rule

While

We need a rule to be able to make assertions about while loops.

- Inference rule because we can only draw conclusions if we know something about the body
- Lets start with:

$$
\frac{\{?\} C\{?\}}{\{?\} \text { while } B \text { do } C\{P\}}
$$

While

- Loop may never execute
- To know P holds after, it had better hold before
- Second approximation:

$$
\frac{\{?\} \subset\{?\}}{\{P\} \text { while } B \text { do } C\{P\}}
$$

While

- Loop may execute C; enf of loop is of C
- P holds at end of while means P holds at end of loop C
- P holds at start of while; loop taken means $P \wedge B$ holds at start of C
- Third approximation:

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P\}}
$$

While

- Always know $\neg B$ when while loop finishes
- Final While rule:

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

While

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

- P satisfying this rule is called a loop invariant
- Must hold before and after the each iteration of the loop

While

- While rule generally used with precondition strengthening and postcondition weakening
- No algorithm for computing P in general
- Requires intuition and an understanding of why the program works

Example

Prove:

$$
\begin{aligned}
& \{n \geq 0\} \\
& x:=0 ; y:=0 \\
& \text { while } x<n \text { do } \\
& (y:=y+((2 * x)+1) ; \\
& x:=x+1) \\
& \{y=n * n\}
\end{aligned}
$$

Example

- Need to find P that is true before and after loop is executed, such that

$$
(P \wedge \neg(x<n)) \Rightarrow y=n * n
$$

Example

- First attempt:

$$
y=x * x
$$

- Motivation:
- Want $y=n * n$
- x counts up to n
- Guess: Each pass of loop calcuates next square

Example

By Post-condition Weakening, suffices to show:
(1) $\{n \geq 0\}$
$x:=0 ; y:=0$;
while $x<n$ do
$(y:=y+((2 * x)+1) ; x:=x+1)$ $\{y=x * x \wedge \neg(x<n)\}$
and
(2) $(y=x * x \wedge \neg(x<n)) \Rightarrow(y=n * n)$

Problem with (2)

- Want (2) $(y=x * x \wedge \neg(x<n)) \Rightarrow(y=n * n)$
- From $\neg(x<n)$ have $x \geq n$
- Need $x=n$
- Don't know this; from this could have $x>n$
- Need stronger invariant
- Try ading $x \leq n$
- Then have $((x \leq n) \wedge \neg(x<n)) \Rightarrow(x=n)$
- Then have $x=n$ when loop done

Example

Second attempt:

$$
P=((y=x * x) \wedge(x \leq n))
$$

Again by Post-condition Weakening, sufices to show:
(1) $\{n \geq 0\}$
$x:=0 ; y:=0$;
while $x<n$ do
$(y:=y+((2 * x)+1) ; x:=x+1)$ $\{(y=x * x) \wedge(x \leq n) \wedge \neg(x<n)\}$
and
(2) $((y=x * x) \wedge(x \leq n) \wedge \neg(x<n)) \Rightarrow(y=n * n)$

Proof of (2)

- $(\neg(x<n)) \Rightarrow(x \geq n)$
- $((x \geq n) \wedge(x \leq n)) \Rightarrow(x=n)$
- $((x=n) \wedge(y=x * x)) \Rightarrow(y=n * n)$

Example

- For (1), set up While Rule using Sequencing Rule
- By Sequencing Rule, suffices to show
(3) $\{n \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}$
and
(4) $\{(y=x * x) \wedge(x \leq n)\}$
while $x<n$ do

$$
\begin{aligned}
& (y:=y+((2 * x)+1) ; x:=x+1) \\
& \{(y=x * x) \wedge(x \leq n) \wedge \neg(x<n)\}
\end{aligned}
$$

Proof of (4)

By While Rule

$$
\text { (5) } \begin{aligned}
&\{(y=x * x) \wedge(x \leq n) \wedge(x<n)\} \\
& y:=y+((2 * x)+1) ; x:=x+1 \\
&\{(y=x * x) \wedge(x \leq n)\} \\
& \hline\{(y=x * x) \wedge(x \leq n)\} \\
& \text { while } x<n d o \\
&(y:=y+((2 * x)+1) ; x:=x+1) \\
&\{(y=x * x) \wedge(x \leq n) \wedge \neg(x<n)\}
\end{aligned}
$$

Proof of (5)

By Sequencing Rule

$$
\text { (6) } \begin{array}{cc}
\{(y=x * x) \wedge(x \leq n) & \text { (7) } \\
\begin{array}{cc}
\{(y=(x+1 \\
\wedge(x<n)\} & \wedge((x+1) \leq \\
y:=y+((2 * x)+1) & x:=x+1 \\
\{(y=(x+1) *(x+1)) & \{(y=x * x) \\
\wedge((x+1) \leq n)\} & \\
\hline & \{(y=x * x) \wedge(x \leq n) \wedge(x<n)\} \\
y:=y+((2 * x)+1) ; & x:=x+1 \\
\{(y=x * x) \wedge(x \leq n)\}
\end{array}
\end{array}
$$

(7) holds by Assignment Axiom

Proof of (6)

By Precondition Strengthening

(8) $((y=x * x)$

$$
\wedge(x \leq n) \wedge(x<n)) \Rightarrow
$$

$$
(((y+((2 * x)+1))
$$

$$
=(x+1) *(x+1))
$$

$$
\wedge((x+1) \leq n))
$$

(9) $\{((y+((2 * x)+1))$

$$
=((x+1) *(x+1)))
$$

$$
\wedge((x+1) \leq n)\}
$$

$$
y:=y+((2 * x)+1)
$$

$$
\{(y=(x+1) *(x+1))
$$

$$
\wedge((x+1) \leq n)\}
$$

$$
\begin{aligned}
& \{(y=x * x) \wedge(x \leq n) \\
& \wedge(x<n)\} \\
& y:=y+((2 * x)+1) \\
& \{(y=(x+1) *(x+1)) \\
& \wedge((x+1) \leq n)\}
\end{aligned}
$$

Have (9) by Assignment Axiom

Proof of (8)

- (Assuming x integer) $(x<n) \Rightarrow((x+1) \leq n)$
- $(y=x * x) \Rightarrow((y+((2 * x)+1))$

$$
\begin{aligned}
& =((x * x)+((2 * x)+1)) \\
& =((x+1) *(x+1)))
\end{aligned}
$$

- That finishes (8), and thus (6) and thus (5) and thus (4) (while)
- Need (3) $\{n \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}$

Proof of (3)

By Sequencing

$$
\text { (10) } \begin{array}{ll}
\{n \geq 0\} & \text { (11) } \\
x:=0 & \{(0=x * x) \wedge(x \leq n)\} \\
\{(0=x * x) \wedge(x \leq n)\} & y:=0 \\
& \{(y \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}
\end{array}
$$

Have (11) by Assignment Axiom

Proof of (10)

By Precondition Strengthening

$$
\begin{array}{cl}
& \text { (13) } \begin{array}{l}
\{(0=0 * 0) \wedge(0 \leq n)\} \\
\\
\\
x:=0 \\
\{(12)(n \geq 0) \Rightarrow((0=0 * 0) \wedge(0 \leq n)) \\
\{n \geq 0\} x:=0 ; y:=0\{(0=x * x) \wedge(x \leq n)\}
\end{array}
\end{array}
$$

- For (12), $0=0 * 0$ and $(n \geq 0) \Leftrightarrow(0 \leq n)$
- Have (13) by Assignment Axiom
- Finishes (10), thus (3), thus (1)

