
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

February 27, 2020

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 1 / 41

Floyd-Hoare Logic

Also called Axiomatic Semantics

Based on formal logic (first order predicate calculus)

Logical system built from axioms and inference rules

Mainly suited to simple imperative programming
languages

Ideas applicable quite broadly

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 2 / 41

Floyd-Hoare Logic

Used to formally prove a property (post-condition) of
the state (the values of the program variables) after
the execution of program, assuming another property
(pre-condition) of the state holds before execution

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 3 / 41

Floyd-Hoare Logic

Goal: Derive statements of form

{P} C {Q}

P, Q logical statements about state, P precondition, Q postcondition,
C program

Example:

{x = 1} x := x + 1 {x = 2}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 4 / 41

Floyd-Hoare Logic

Approach: For each type of language statement, give an axiom or
inference rule stating how to derive assertions of form

{P} C {Q}

where C is a statement of that type

Compose axioms and inference rules to build proofs for complex
programs

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 5 / 41

Partial vs Total Correctness

An expression {P} C {Q} is a partial correctness
statement
For total correctness must also prove that C
terminates (i.e. doesnt run forever)

Written: [P] C [Q]

Will only consider partial correctness here

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 6 / 41

Simple Imperative Language

We will give rules for simple imperative language

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 do 〈command〉

Could add more features, like for-loops

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 7 / 41

Substitution

Notation: P[e/v] (sometimes P[v → e])

Meaning: Replace every v in P by e

Example:

(x + 2)[y − 1/x] = ((y − 1) + 2)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 8 / 41

The Assingment Rule

{P[e/x]} x := e {P}

Example:

{

y

= 2

?
}

x := y { x

x

= 2 }

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 9 / 41

The Assingment Rule

{P[e/x]} x := e {P}

Example:

{

y

= 2

?

}
x := y {

x

x = 2 }

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 9 / 41

The Assingment Rule

{P[e/x]} x := e {P}

Example:

{
y = 2

?

}
x := y {

x

x = 2 }

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 9 / 41

The Assingment Rule

{P[e/x]} x := e {P}
Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1 {x = n + 1}

{2 = 2} x := 2 {x = 2}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 10 / 41

The Assignment Rule – Your Turn

What is the weakest precondition of

x := x + y { x + y = wx }?

{

(x + y) + y = w(x + y)

}?
x := x + y
{ x + y = wx }

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 11 / 41

The Assignment Rule – Your Turn

What is the weakest precondition of

x := x + y { x + y = wx }?

{ (x + y) + y = w(x + y) }

?

x := x + y
{ x + y = wx }

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 11 / 41

Precondition Strengthening

(P ⇒ P ′) {P ′} C {Q}
{P} C {Q}

Meaning: If we can show that P implies P ′ (i.e. (P ⇒ P ′) and
we can show that {P} C {Q}, then we know that {P} C {Q}
P is stronger than P ′ means P ⇒ P ′

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 12 / 41

Precondition Strengthening

Examples:

x = 3⇒ x < 7 {x < 7} x := x + 3 {x < 10}
{x = 3} x := x + 3 {x < 10}

True ⇒ (2 = 2) {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

x = n⇒ x + 1 = n + 1 {x + 1 = n + 1} x := x + 1 {x = n + 1}
{x = n} x := x + 1 {x = n + 1}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 13 / 41

Which Inferences Are Correct?

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

YES

{x = 3} x := x ∗ x {x < 25}

{x = 3} x := x ∗ x {x < 25}

NO

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

{x ∗ x < 25} x := x ∗ x {x < 25}

YES

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 / 41

Which Inferences Are Correct?

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}
YES

{x = 3} x := x ∗ x {x < 25}

{x = 3} x := x ∗ x {x < 25}

NO

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

{x ∗ x < 25} x := x ∗ x {x < 25}

YES

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 / 41

Which Inferences Are Correct?

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}
YES

{x = 3} x := x ∗ x {x < 25}

{x = 3} x := x ∗ x {x < 25}
NO

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

{x ∗ x < 25} x := x ∗ x {x < 25}

YES

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 / 41

Which Inferences Are Correct?

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}
YES

{x = 3} x := x ∗ x {x < 25}

{x = 3} x := x ∗ x {x < 25}
NO

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

{x ∗ x < 25} x := x ∗ x {x < 25}
YES

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 / 41

Post Condition Weakening

{P} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

Example:

{x + y = 5} x := x + y {x = 5} (x = 5)⇒ (x < 10)

{x + y = 5} x := x + y {x < 10}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 15 / 41

Rule of Consequence

P ⇒ P ′ {P ′} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

Logically equivalent to the combination of Precondition
Strengthening and Postcondition Weakening

Uses P ⇒ P and Q ⇒ Q

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 16 / 41

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

Example:

{z = z ∧ z = z} x := z {x = z ∧ z = z}
{x = z ∧ z = z} y := z {x = z ∧ y = z}

{z = z ∧ z = z} x := z ; y := z {x = z ∧ y = z}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 17 / 41

If Then Else

{P ∧ B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} if B then C1 else C2 {Q}

Example:

{y = a} if x < 0 then y := y − x else y := y + x {y = a + |x |}
By If Then Else Rule suffices to show:

(1) {y = a ∧ x < 0} y := y − x {y = a + |x |} and

(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 18 / 41

(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}

(3) (y = a ∧ x < 0)⇒ (y − x = a + |x |)
(2) {y − x = a + |x |} y := y − x {y = a + |x |}
(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}

(1) reduces to (2) and (3) by Precondition Strengthening

(2) instance of Assignment Axiom

(3) holds since x < 0⇒ |x | = −x

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 19 / 41

(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

(6) (y = a ∧ ¬(x < 0))⇒ (y + x = a + |x |)
(5) {y + x = a + |x |} y := y + x {y = a + |x}

(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

(4) reduces to (5) and (6) by Precondition Strengthening

(5) Follows from Assignment Axiom

(6) since ¬(x < 0)⇒ |x | = x

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 20 / 41

If Then Else

(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}
(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

{y = a} if x < 0 then y := y − x else y := y + x {y = a + |x |}

by the If Then Else Rule

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 21 / 41

While

We need a rule to be able to make assertions about while loops.

Inference rule because we can only draw conclusions if we know
something about the body

Lets start with:
{ ? } C { ? }

{ ? } while B do C {P}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 22 / 41

While

Loop may never execute

To know P holds after, it had better hold before

Second approximation:

{ ? } C { ? }
{P} while B do C {P}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 23 / 41

While

Loop may execute C ; enf of loop is of C

P holds at end of while means P holds at end of loop C

P holds at start of while; loop taken means P ∧ B holds at start of C

Third approximation:

{P ∧ B} C {P}
{P} while B do C {P}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 24 / 41

While

Always know ¬B when while loop finishes

Final While rule:

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 25 / 41

While

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

P satisfying this rule is called a loop invariant

Must hold before and after the each iteration of the loop

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 26 / 41

While

While rule generally used with precondition strengthening and
postcondition weakening

No algorithm for computing P in general

Requires intuition and an understanding of why the program
works

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 27 / 41

Example

Prove:
{n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1);
x := x + 1)
{y = n ∗ n}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 28 / 41

Example

Need to find P that is true before and after loop is
executed, such that

(P ∧ ¬(x < n))⇒ y = n ∗ n

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 29 / 41

Example

First attempt:
y = x ∗ x

Motivation:

Want y = n ∗ n
x counts up to n

Guess: Each pass of loop calcuates next square

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 30 / 41

Example

By Post-condition Weakening, suffices to show:

(1) {n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{y = x ∗ x ∧ ¬(x < n)}

and

(2) (y = x ∗ x ∧ ¬(x < n))⇒ (y = n ∗ n)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 31 / 41

Problem with (2)

Want (2) (y = x ∗ x ∧ ¬(x < n))⇒ (y = n ∗ n)

From ¬(x < n) have x ≥ n

Need x = n

Don’t know this; from this could have x > n

Need stronger invariant

Try ading x ≤ n

Then have ((x ≤ n) ∧ ¬(x < n))⇒ (x = n)

Then have x = n when loop done

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 32 / 41

Example

Second attempt:

P = ((y = x ∗ x) ∧ (x ≤ n))

Again by Post-condition Weakening, sufices to show:

(1) {n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}

and

(2) ((y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n))⇒ (y = n ∗ n)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 33 / 41

Proof of (2)

(¬(x < n))⇒ (x ≥ n)

((x ≥ n) ∧ (x ≤ n))⇒ (x = n)

((x = n) ∧ (y = x ∗ x))⇒ (y = n ∗ n)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 34 / 41

Example

For (1), set up While Rule using Sequencing Rule

By Sequencing Rule, suffices to show

(3) {n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}
and

(4) {(y = x ∗ x) ∧ (x ≤ n)}
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 35 / 41

Proof of (4)

By While Rule

(5) {(y = x ∗ x) ∧ (x ≤ n) ∧ (x < n)}
y := y + ((2 ∗ x) + 1); x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n)}
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 36 / 41

Proof of (5)

By Sequencing Rule

(6) {(y = x ∗ x) ∧ (x ≤ n)
∧(x < n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

(7) {(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}
x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n) ∧ (x < n)}
y := y + ((2 ∗ x) + 1); x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

(7) holds by Assignment Axiom

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 37 / 41

Proof of (6)

By Precondition Strengthening

(8) ((y = x ∗ x)
∧(x ≤ n) ∧ (x < n))⇒

(((y + ((2 ∗ x) + 1))
= (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n))

(9) {((y + ((2 ∗ x) + 1))
= ((x + 1) ∗ (x + 1)))
∧((x + 1) ≤ n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n)
∧(x < n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

Have (9) by Assignment Axiom

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 38 / 41

Proof of (8)

(Assuming x integer) (x < n)⇒ ((x + 1) ≤ n)

(y = x ∗ x)⇒ ((y + ((2 ∗ x) + 1))
= ((x ∗ x) + ((2 ∗ x) + 1))
= ((x + 1) ∗ (x + 1)))

That finishes (8), and thus (6) and thus (5) and thus (4) (while)

Need (3) {n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 39 / 41

Proof of (3)

By Sequencing

(10) {n ≥ 0}
x := 0
{(0 = x ∗ x) ∧ (x ≤ n)}

(11) {(0 = x ∗ x) ∧ (x ≤ n)}
y := 0
{(y = x ∗ x) ∧ (x ≤ n)}

{n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}

Have (11) by Assignment Axiom

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 40 / 41

Proof of (10)

By Precondition Strengthening

(12) (n ≥ 0)⇒ ((0 = 0 ∗ 0) ∧ (0 ≤ n))

(13) {(0 = 0 ∗ 0) ∧ (0 ≤ n)}
x := 0
{(0 = x ∗ x) ∧ (x ≤ n)}

{n ≥ 0} x := 0; y := 0 {(0 = x ∗ x) ∧ (x ≤ n)}

For (12), 0 = 0 ∗ 0 and (n ≥ 0)⇔ (0 ≤ n)

Have (13) by Assignment Axiom

Finishes (10), thus (3), thus (1)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 41 / 41

