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Floyd-Hoare Logic

Also called Axiomatic Semantics

Based on formal logic (first order predicate calculus)

Logical system built from axioms and inference rules

Mainly suited to simple imperative programming
languages

Ideas applicable quite broadly
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Floyd-Hoare Logic

Used to formally prove a property (post-condition) of
the state (the values of the program variables) after
the execution of program, assuming another property
(pre-condition) of the state holds before execution
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Floyd-Hoare Logic

Goal: Derive statements of form

{P} C {Q}

P, Q logical statements about state, P precondition, Q postcondition,
C program

Example:

{x = 1} x := x + 1 {x = 2}
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Floyd-Hoare Logic

Approach: For each type of language statement, give an axiom or
inference rule stating how to derive assertions of form

{P} C {Q}

where C is a statement of that type

Compose axioms and inference rules to build proofs for complex
programs
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Partial vs Total Correctness

An expression {P} C {Q} is a partial correctness
statement
For total correctness must also prove that C
terminates (i.e. doesnt run forever)

Written: [P] C [Q]

Will only consider partial correctness here
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Simple Imperative Language

We will give rules for simple imperative language

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 do 〈command〉

Could add more features, like for-loops
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Substitution

Notation: P[e/v ] (sometimes P[v → e])

Meaning: Replace every v in P by e

Example:

(x + 2)[y − 1/x ] = ((y − 1) + 2)
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The Assingment Rule

{P[e/x ]} x := e {P}

Example:

{

y

= 2

?
}

x := y { x

x

= 2 }
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The Assingment Rule

{P[e/x ]} x := e {P}

Example:
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= 2
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}
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x

x = 2 }
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The Assingment Rule

{P[e/x ]} x := e {P}

Example:

{
y = 2

?

}
x := y {

x

x = 2 }
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The Assingment Rule

{P[e/x ]} x := e {P}
Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1 {x = n + 1}

{2 = 2} x := 2 {x = 2}
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The Assignment Rule – Your Turn

What is the weakest precondition of

x := x + y { x + y = wx }?

{

(x + y) + y = w(x + y)

}?
x := x + y
{ x + y = wx }
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The Assignment Rule – Your Turn

What is the weakest precondition of

x := x + y { x + y = wx }?

{ (x + y) + y = w(x + y) }

?

x := x + y
{ x + y = wx }
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Precondition Strengthening

(P ⇒ P ′) {P ′} C {Q}
{P} C {Q}

Meaning: If we can show that P implies P ′ (i.e. (P ⇒ P ′) and
we can show that {P} C {Q}, then we know that {P} C {Q}
P is stronger than P ′ means P ⇒ P ′

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 12 / 41

Precondition Strengthening

Examples:

x = 3⇒ x < 7 {x < 7} x := x + 3 {x < 10}
{x = 3} x := x + 3 {x < 10}

True ⇒ (2 = 2) {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

x = n⇒ x + 1 = n + 1 {x + 1 = n + 1} x := x + 1 {x = n + 1}
{x = n} x := x + 1 {x = n + 1}
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Which Inferences Are Correct?

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

YES

{x = 3} x := x ∗ x {x < 25}

{x = 3} x := x ∗ x {x < 25}

NO

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}

{x ∗ x < 25} x := x ∗ x {x < 25}

YES

{x > 0 ∧ x < 5} x := x ∗ x {x < 25}
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Post Condition Weakening

{P} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

Example:

{x + y = 5} x := x + y {x = 5} (x = 5)⇒ (x < 10)

{x + y = 5} x := x + y {x < 10}
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Rule of Consequence

P ⇒ P ′ {P ′} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

Logically equivalent to the combination of Precondition
Strengthening and Postcondition Weakening

Uses P ⇒ P and Q ⇒ Q
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Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

Example:

{z = z ∧ z = z} x := z {x = z ∧ z = z}
{x = z ∧ z = z} y := z {x = z ∧ y = z}

{z = z ∧ z = z} x := z ; y := z {x = z ∧ y = z}
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If Then Else

{P ∧ B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} if B then C1 else C2 {Q}

Example:

{y = a} if x < 0 then y := y − x else y := y + x {y = a + |x |}
By If Then Else Rule suffices to show:

(1) {y = a ∧ x < 0} y := y − x {y = a + |x |} and

(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}
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(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}

(3) (y = a ∧ x < 0)⇒ (y − x = a + |x |)
(2) {y − x = a + |x |} y := y − x {y = a + |x |}
(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}

(1) reduces to (2) and (3) by Precondition Strengthening

(2) instance of Assignment Axiom

(3) holds since x < 0⇒ |x | = −x
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(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

(6) (y = a ∧ ¬(x < 0))⇒ (y + x = a + |x |)
(5) {y + x = a + |x |} y := y + x {y = a + |x}

(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

(4) reduces to (5) and (6) by Precondition Strengthening

(5) Follows from Assignment Axiom

(6) since ¬(x < 0)⇒ |x | = x
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If Then Else

(1) {y = a ∧ x < 0} y := y − x {y = a + |x |}
(4) {y = a ∧ ¬(x < 0)} y := y + x {y = a + |x |}

{y = a} if x < 0 then y := y − x else y := y + x {y = a + |x |}

by the If Then Else Rule
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While

We need a rule to be able to make assertions about while loops.

Inference rule because we can only draw conclusions if we know
something about the body

Lets start with:
{ ? } C { ? }

{ ? } while B do C {P}
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While

Loop may never execute

To know P holds after, it had better hold before

Second approximation:

{ ? } C { ? }
{P} while B do C {P}
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While

Loop may execute C ; enf of loop is of C

P holds at end of while means P holds at end of loop C

P holds at start of while; loop taken means P ∧ B holds at start of C

Third approximation:

{P ∧ B} C {P}
{P} while B do C {P}
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While

Always know ¬B when while loop finishes

Final While rule:

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}
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While

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

P satisfying this rule is called a loop invariant

Must hold before and after the each iteration of the loop
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While

While rule generally used with precondition strengthening and
postcondition weakening

No algorithm for computing P in general

Requires intuition and an understanding of why the program
works
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Example

Prove:
{n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1);
x := x + 1)
{y = n ∗ n}
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Example

Need to find P that is true before and after loop is
executed, such that

(P ∧ ¬(x < n))⇒ y = n ∗ n
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Example

First attempt:
y = x ∗ x

Motivation:

Want y = n ∗ n
x counts up to n

Guess: Each pass of loop calcuates next square

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 30 / 41



Example

By Post-condition Weakening, suffices to show:

(1) {n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{y = x ∗ x ∧ ¬(x < n)}

and

(2) (y = x ∗ x ∧ ¬(x < n))⇒ (y = n ∗ n)
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Problem with (2)

Want (2) (y = x ∗ x ∧ ¬(x < n))⇒ (y = n ∗ n)

From ¬(x < n) have x ≥ n

Need x = n

Don’t know this; from this could have x > n

Need stronger invariant

Try ading x ≤ n

Then have ((x ≤ n) ∧ ¬(x < n))⇒ (x = n)

Then have x = n when loop done

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 32 / 41

Example

Second attempt:

P = ((y = x ∗ x) ∧ (x ≤ n))

Again by Post-condition Weakening, sufices to show:

(1) {n ≥ 0}
x := 0; y := 0;
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}

and

(2) ((y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n))⇒ (y = n ∗ n)
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Proof of (2)

(¬(x < n))⇒ (x ≥ n)

((x ≥ n) ∧ (x ≤ n))⇒ (x = n)

((x = n) ∧ (y = x ∗ x))⇒ (y = n ∗ n)
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Example

For (1), set up While Rule using Sequencing Rule

By Sequencing Rule, suffices to show

(3) {n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}
and

(4) {(y = x ∗ x) ∧ (x ≤ n)}
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}
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Proof of (4)

By While Rule

(5) {(y = x ∗ x) ∧ (x ≤ n) ∧ (x < n)}
y := y + ((2 ∗ x) + 1); x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n)}
while x < n do
(y := y + ((2 ∗ x) + 1); x := x + 1)
{(y = x ∗ x) ∧ (x ≤ n) ∧ ¬(x < n)}
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Proof of (5)

By Sequencing Rule

(6) {(y = x ∗ x) ∧ (x ≤ n)
∧(x < n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

(7) {(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}
x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n) ∧ (x < n)}
y := y + ((2 ∗ x) + 1); x := x + 1
{(y = x ∗ x) ∧ (x ≤ n)}

(7) holds by Assignment Axiom
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Proof of (6)

By Precondition Strengthening

(8) ((y = x ∗ x)
∧(x ≤ n) ∧ (x < n))⇒

(((y + ((2 ∗ x) + 1))
= (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n))

(9) {((y + ((2 ∗ x) + 1))
= ((x + 1) ∗ (x + 1)))
∧((x + 1) ≤ n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

{(y = x ∗ x) ∧ (x ≤ n)
∧(x < n)}
y := y + ((2 ∗ x) + 1)
{(y = (x + 1) ∗ (x + 1))
∧((x + 1) ≤ n)}

Have (9) by Assignment Axiom

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 38 / 41

Proof of (8)

(Assuming x integer) (x < n)⇒ ((x + 1) ≤ n)

(y = x ∗ x)⇒ ((y + ((2 ∗ x) + 1))
= ((x ∗ x) + ((2 ∗ x) + 1))
= ((x + 1) ∗ (x + 1)))

That finishes (8), and thus (6) and thus (5) and thus (4) (while)

Need (3) {n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}
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Proof of (3)

By Sequencing

(10) {n ≥ 0}
x := 0
{(0 = x ∗ x) ∧ (x ≤ n)}

(11) {(0 = x ∗ x) ∧ (x ≤ n)}
y := 0
{(y = x ∗ x) ∧ (x ≤ n)}

{n ≥ 0} x := 0; y := 0 {(y = x ∗ x) ∧ (x ≤ n)}

Have (11) by Assignment Axiom
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Proof of (10)

By Precondition Strengthening

(12) (n ≥ 0)⇒ ((0 = 0 ∗ 0) ∧ (0 ≤ n))

(13) {(0 = 0 ∗ 0) ∧ (0 ≤ n)}
x := 0
{(0 = x ∗ x) ∧ (x ≤ n)}

{n ≥ 0} x := 0; y := 0 {(0 = x ∗ x) ∧ (x ≤ n)}

For (12), 0 = 0 ∗ 0 and (n ≥ 0)⇔ (0 ≤ n)

Have (13) by Assignment Axiom

Finishes (10), thus (3), thus (1)
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