Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

February 27, 2020

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020

CS477 Formal Software Dev Methods

Floyd-Hoare Logic

Also called Axiomatic Semantics

o Based on formal logic (first order predicate calculus)

Logical system built from axioms and inference rules

o Mainly suited to simple imperative programming
languages

Ideas applicable quite broadly

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 2 /41

Floyd-Hoare Logic Floyd-Hoare Logic

o Used to formally prove a property (post-condition) of
the state (the values of the program variables) after
the execution of program, assuming another property
(pre-condition) of the state holds before execution

/ 41

o Goal: Derive statements of form
{P} C {@Q}

e P, Q logical statements about state, P precondition, @ postcondition,
C program

o Example:

{x=1} x =x+1 {x=2}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 Bl

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020

Floyd-Hoare Logic Partial vs Total Correctness

o Approach: For each type of language statement, give an axiom or
inference rule stating how to derive assertions of form

{P} C {@}

where C is a statement of that type

@ Compose axioms and inference rules to build proofs for complex
programs

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 5/

41

o An expression {P} C {Q} is a partial correctness

statement
o For total correctness must also prove that C
terminates (i.e. doesnt run forever)
o Written: [P] C [Q]

o Will only consider partial correctness here

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020

o We will give rules for simple imperative language o Notation: P[e/v] (sometimes P[v — ¢€])
(command) = (variable) := (term) o Meaning: Replace every v in P by e
| (command); ...; (command) o Example:

| if (statement) then (command) else (command)

| while (statement) do (command) (x+2ly =1/ =(r-1)+2)

o Could add more features, like for-loops

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 7/41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 8 /41

The Assingment Rule The Assingment Rule

{Ple/x]} x = e {P} {Ple/x]} x = e {P}

Example: Example:

{ ? }x::y{X:Q} {l:|:2}x::y:2}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 9 /41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020

The Assingment Rule The Assingment Rule

{Ple/x]} x = e {P}

Examples:
{Ple/x]} x == e {P}
{y=2x =y {x=2}
Example:
{y=2} x = 2{y=x}
{:2}X':y:2} {x+1=n+1} x == x+1 {x=n+1}

{2=2} x == 2 {x=2}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 9/41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 10 /41

o What is the weakest precondition of

x = x+y{x+y=wx}?

{ ? }
X X+y
{x+y=wx}

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 11 /41

The Assignment Rule — Your Turn The Assignment Rule — Your Turn

o What is the weakest precondition of

x = x+y{x+y=wx}?

{(x+y)+ty=wlx+y)}
X X+y
{x+y=wx}

(P=F) {P}C{@}
{P} C{@}

e Meaning: If we can show that P implies P’ (i.e. (P = P’) and
we can show that {P} C {Q}, then we know that {P} C {Q}
e P is stronger than P’ means P = P’

Elsa L Gunter

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 11 /41

Precondition Strengthening Precondition Strengthening

o Examples:
x=3=>x<7 {x<T7}x = x+3 {x<10}
{x=3} x == x+3 {x <10}
True=(2=2) {2=2} x =2 {x=2}

{True} x = 2 {x=2}

x=n=x+1=n+1 {x+1=n+1} x = x+1{x=n+1}

CS477 Formal Software Dev Methods

February 27, 2020 12 /41

{x>0Ax<b} x = xxx {x <25}
{x=3} x := x*xx {x <25}

{x=3} x = xxx {x <25}
{x>0Ax <5} x == xxx {x <25}

{x*x <25} x = xxx {x <25}
{x>0Ax<b5} x = xxx {x <25}

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 14 / 41

{x=n} x == x+1{x=n+1}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 13/4

Which Inferences Are Correct? Which Inferences Are Correct?

{x>0Ax <5} x = xxx {x <25}
{x=3} x := x*xx {x <25}

YES

{x=3} x := x*xx {x <25}
{x>0Ax <5} x = x*xx {x <25}

{x*xx <25} x = x*xx {x <25}
{x>0Ax<5} x = xxx {x <25}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 /41

{x>0Ax<5} x := xxx {x <25}
YES
{x=3} x = x*xx {x <25}

{x=3} x = x*xx {x <25}
{x>0Ax<5} x = xxx {x <25}

NO

{x*xx <25} x = x*xx {x <25}
{x>0Ax <5} x

x*x {x <25}

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 14 / 41

Which Inferences Are Correct? Which Inferences Are Correct?

{x>0Ax<5} x = xxx {x <25}

ES
{x =3} x = x*x {x <25}
=3 : <25
{x =3} x Xk x {x } NO
{x>0Ax <5} x x*x {x <25}
*x < 25 * <25
{x*x } x x*x {x } VES

{x>0Ax <5} x = xxx {x <25}

{Prc{Qy @=@
{P} C{@}

o Example:

{x+y=5} x:=x+y {x=5} (x=5)= (x<10)
{x+y=5} x:=x+y {x <10}

Elsa L Gunter CS477 Formal Software Dev Methods

{P} G {Q} {Q} G {R}
{P} G G {R}

o Example:

{z=zNz=2z} x =z {x=2zNz=12z}
{x=zNz=z} y=z{x=zANy=12z}
{z=zNz=2z} x:=z, y =z {x=zANy =12z}

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 17 /41

February 27, 2020 15 / 41

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 14 /41

Post Condition Weakening Rule of Consequence

P=FP {P}C{Q}

{P} C {@}
o Logically equivalent to the combination of Precondition

Strengthening and Postcondition Weakening
o UsesP=Pand Q= Q

QA =Q

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 16 / 41

{PAB} G {Q} {PA-B} G {Q}
{P} if B then G, else C, {Q}

o Example:

{y=a}l if x<Otheny:=y—xelsey =y+x {y=a+|x|}
By If_Then_Else Rule suffices to show:

o (1){y=aAx<0} y:=y—x {y=a+|x|} and

o (M) ly=ar=(x<0)} yi=y+x{y=a+lx]}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 18 /41

(1) {y=anx<0} y:=y—x{y=a+|x|} (4) {y =an=(x<0)} y:=y+x{y=a+Ix]}

(3) (y=anx<0)=(y—x=a+|x])
(2) {y—x=a+|xl} yr=y—x{y=a+|x}
(1) {y=anx<0}y=y—x{y=a+|x}

o (1) reduces to (2) and (3) by Precondition Strengthening
e (2) instance of Assignment Axiom
o (3) holds since x < 0 = |x| = —x

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 19 /41

(6) (y=aA—(x<0)=(y+x=a+|x])
5) {y+x=a+|x]} y=y+x{y=a+|x}

4) y=an-(x<0)} y:=y+x{y=a+|x}

—

@ (4) reduces to (5) and (6) by Precondition Strengthening
@ (5) Follows from Assignment Axiom
@ (6) since ~(x < 0) = |x| = x

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 20 / 41

(1) {y=anx<0} y:=y—x{y=a+lxl}
(4) y=an-x<0)} y:=y+x{y=a+xl}
{y=a}l if x<Otheny:=y—xelsey:=y+x {y=a+|x|}

by the If_Then_Else Rule

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 21 /41

We need a rule to be able to make assertions about while loops.

o Inference rule because we can only draw conclusions if we know
something about the body

(rryc{7}
{ ? } while B do C {P}

o Lets start with:

Elsa L Gunter CS477 Formal Software Dev Methods

o Loop may never execute
o To know P holds after, it had better hold before
e Second approximation:
{7ryc{?}
{P} while B do C {P}

Elsa L Gunter CS477 Formal Software Dev Methods

o Loop may execute C; enf of loop is of C
@ P holds at end of while means P holds at end of loop C
@ P holds at start of while; loop taken means P A B holds at start of C
@ Third approximation:
{PAB} C {P}
{P} while B do C {P}

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020 23 /41

February 27, 2020 24 / 41

@ Always know =B when while loop finishes
o Final While rule:
{PAB} C {P}
{P} while B do C {P N-B}

Elsa L Gunter CS477 Formal Software Dev Methods

25 / 41

{(PAB} C {P}
{PY while B do C {P A —B}

o P satisfying this rule is called a loop invariant

@ Must hold before and after the each iteration of the loop

Elsa L Gunter CS477 Formal Software Dev Methods 26 / 41

February 27, 2020

February 27, 2020

o While rule generally used with precondition strengthening and
postcondition weakening

o No algorithm for computing P in general

o Requires intuition and an understanding of why the program
works

Elsa L Gunter CS477 Formal Software Dev Methods

27 /41

Prove:
{n=0}
x:=0;, y:=0;
while x < n do
(v =y +(2*x)+1);
x:=x+1)
{y =n=xn}

Elsa L Gunter CS477 Formal Software Dev Methods 28 / 41

February 27, 2020

February 27, 2020

o Need to find P that is true before and after loop is
executed, such that

(PA=(x<n)=y=nxn

Elsa L Gunter CS477 Formal Software Dev Methods

February 27, 2020

29 /41

o First attempt:
Yy =X%*X

o Motivation:
oWanty =nxn
e X counts up to n

o Guess: Each pass of loop calcuates next square

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 30 /41

o Want (2) (y = xxxA=(x < n))= (y=nxn)
e From —=(x < n) have x > n
By Post-condition Weakening, suffices to show: o Need x — n
(1) {n=0} e Don't know this; from this could have x > n
:V;;eoj(i :n:d?y; o Need stronger invariant
(yi=y+(2*x)+1); x =x+1) o Try ading x <n
{y=xxxA-(x<n)} o Then have ((x < n) A —(x < n)) = (x =n)
and o Then have x = n when loop done

(2) (y=x*xA=(x<n))=(y=nxn)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 31 /41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 32 /41

oo 0

Second attempt:

P=((y=x%x)A(x<n)

Again by Post-condition Weakening, sufices to show: o ((x < n))=(x=>n)

(1) {n>0} o (x>n)A(x<n)= (x=n)
x:=0; y:=0; o((x=nA(y=xx%xx))=(y=nxn)
while x < n do
(y=y+(2xx)+1); x:=x
{y=xxx)A(x <n)A=(x <

and

2) (y=x*xx)A(x<n)A=(x<n))=(y=n=n)

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 33 /41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 34 /41

Proof of ¢

e For (1), set up While Rule using Sequencing Rule By While Rule

e By Sequencing Rule, suffices to show (5) {(y=x*xx)A(x<n)A(x<n)}
(3) {n>0} x:=0;, y =0 {(y=x*xx)A(x<n)} yi=y+(2ex)+1); x:=x+1
and {ly =xxx) A (x < n)}
() Ay =x=x) A (x <)} e e

while x < n do
(yi=y+(2xx)+1); x:=x+1)
{ly=x*x)A(x < n)A=(x<n)}

while x < n do
(yi=y+(2*x)+1); x =x+1)
{y=xxx)AN(x <n)A=(x <n)}

Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020 35 /41 Elsa L Gunter CS477 Formal Software Dev Methods February 27, 2020

Proof of (5)

By Sequencing Rule

(6) {(y =x*x) A (x < n)
A(x < n)}
y=y+((2xx)+1)
{(r =(x+1)x(x+1))
AM(x+1) < n)}

{ly=xxx)AN(x<n)A(x <n)}
y=y+((2*xx)+1); x:=x+1
{y = xx) A (x <)}

(M) {ly =(x+1) = (x+1))
A(x+1) < n)}
x:=x+1
{r=xxx)A(x<n)}

(7) holds by Assignment Axiom

CS477 Formal Software Dev Methods 37 /41

Proof of (6)

By Precondition Strengthening

9) {(y+(2+x)+1))
=((x+1)*(x+1)))
A(x+1) <n)}

y=y+((2*x)+1)
=(x+1)x(x+1)) {(y=(x+1)x(x+1))

A(x+1) < n)) A(x+1) < n)}

{(y=x*x)AN(x<n)

A(x < n)}
y=y+(2*x)+1
{ly=Cx+1)*(x+
A(x+1) < n)}

() ((y=xxx)
Ax < n)A(x < n))=

(((y +((2%x) +1))

)
1))

Have (9) by Assignment Axiom

CS477 Formal Software Dev Methods

February 27, 2020

Proof of (8)

o (Assuming x integer) (x < n) = ((x+1) < n)

o (y=x*x)= ((y+(2xx) +1)
= () + (25) 1))
= ((x+ 1) * (x + 1))

o That finishes (8), and thus (6) and thus (5) and thus (4) (while)
o Need (3) {n >0} x:=0; y:=0 {(y =x*x)A(x <n)}

CS477 Formal Software Dev Methods

Proof of (3)

By Sequencing
(10) {n>0} (1) {@=xx)A(c<)

x:=0 y:=0
{(0=x*x) A (x < n)} {(y = x*x) A (x <)}

{n>0} x:=0; y:=0 {(y =x*xx)A(x <n)}

Have (11) by Assignment Axiom

CS477 Formal Software Dev Methods 40 / 41

February 27, 2020

Proof of (10)

By Precondition Strengthening

(13) {(0=0%0)A(0<n)}
x:=0
) {(0=xx%x)A(x <n)}

)
{n>0} x:=0; y:=0 {(0=xxx)A(x <n)}

@ For (12),0=0%0and (n>0) < (0 < n)
o Have (13) by Assignment Axiom
@ Finishes (10), thus (3), thus (1)

CS477 Formal Software Dev Methods

