

Demo: my_theory

My First Theory File

File name: my_theory.thy
Contents:
theory my_theory
imports Main
begin

thm impI

$$
\begin{aligned}
& \text { lemma trivial: "A } \longrightarrow \mathrm{A} " \\
& \text { apply (rule impI) } \\
& \text { apply assumption } \\
& \text { done (* end of lemma *) }
\end{aligned}
$$

```
thm trivial
end (* of theory file *)


\section*{Overview of Isabelle/HOL}
- HOL \(=\) Higher-Order Logic
- HOL \(=\) Types + Lambda Calculus + Logic
- HOL has
- datatypes
- recursive functions
- logical operators ( \(\wedge, \vee, \neg, \longrightarrow, \forall, \exists, \ldots\) )
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order \(=\) functions are values, too!
- Booleans are values, too! And predicates are functions.
- We'll start with propositional and first order logic

\section*{Formulae (first Approximation)}
- Syntax (in decreasing priority):
\begin{tabular}{ll|l} 
form & \(::=\) & \((\) form \()\) \\
& \(\neg\) form & term \(=\) term \\
& form \(\vee\) form & form \(\wedge\) form \\
& \(\forall x\). form & \(\exists x\). form \\
& and some others
\end{tabular}
- Scope of quantifiers: as far to the right as possible


\section*{Isabelle Syntax}
- Distinct from HOL syntax
- Contains HOL syntax within it
- Also the same as (large subset of) HOL - need to not confuse them
- \(\neg A \wedge B \vee C \equiv((\neg A) \wedge B) \vee C\)
- \(A \wedge B=C \equiv A \wedge(B=C)\)
- \(\forall x . P \times \wedge Q x \equiv \forall x\). \((P \times \wedge Q x)\)
- \(\forall x . \exists y . P \times y \wedge Q x \equiv \forall x .(\exists y .(P \times y \wedge Q x))\)

\section*{sorry}
- "completes" any proof (by giving up, and accepting it)
- Suitable for top-down development of theories:
- Assume lemmas first, prove them later.

Only allowed for interactive proof!

\section*{Theory = Module}

Syntax:
theory MyTh
imports \(I m p T h_{1} \ldots \operatorname{Imp} T h_{n}\)
begin
declarations, definitions, theorems, proofs, ... end
- MyTh: name of theory being built. Must live in file MyTh.thy.
- ImpTh \(h_{i}\) : name of imported theories. Importing is transitive.

\section*{Meta-logic: Basic Constructs}

\section*{Implication: \(\Longrightarrow\) (==>)}

For separating premises and conclusion of theorems / rules
Equality: \(\equiv(==)\)
For definitions
Universal Quantifier: \(\wedge\) (!!)
Usually inserted and removed by Isabelle automatically
Do not use inside HOL formulae

Rule/Goal Notation
- \(\left[\left|A_{1} ; \ldots ; A_{n}\right|\right] \Longrightarrow B \quad\) abbreviates \(\quad A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B\)
- Means the rule (or potential rule):
\[
\frac{A_{1} ; \ldots ; A_{n}}{B}
\]
- ; \(\approx\) "and"
- Note: A theorem is a rule; a rule is a theorem.
- Turn on use of
\[
\left[\left|A_{1} ; \ldots ; A_{n}\right|\right]
\]
by
Plugins \(\rightarrow\) Plugin Options... \(\rightarrow\) Isabelle \(\rightarrow\) General \(\rightarrow\) Print Mode = brackets

\section*{Proof Basics}
- Isabelle uses Natural Deduction proofs
- Uses (modified) sequent encoding
- Rule notation:
\[
\begin{aligned}
& \text { Rule Sequent Encoding } \\
& \frac{A_{1} \ldots A_{n}}{A} \quad \llbracket A_{1}, \ldots, A_{n} \rrbracket \Longrightarrow A \\
& \text { B } \\
& \frac{\vdots}{A_{1} \ldots \overline{A_{i}} \ldots A_{n}} \quad \llbracket A_{1}, \ldots, B \Longrightarrow A_{i}, \ldots, A_{n} \rrbracket \Longrightarrow A
\end{aligned}
\]

\section*{Natural Deduction}

For each logical operator \(\oplus\), have two kinds of rules:
Introduction: How can I prove \(A \oplus B\) ?
\[
\frac{?}{A \oplus B}
\]

Elimination: What can I prove using \(A \oplus B\) ?
\[
\frac{\ldots A \oplus B \ldots}{?}
\]

\section*{Operational Reading}
\[
\frac{A_{1} \ldots A_{n}}{A}
\]

Introduction rule:
To prove \(A\) it suffices to prove \(A_{1} \ldots A_{n}\).

Elimination rule:
If we know \(A_{1}\) and we want to prove \(A\)
\[
\text { it suffices to prove } A_{2} \ldots A_{n}
\]

Natural Deduction for Propositional Logic
\[
\begin{array}{ll}
\frac{A B}{A \wedge B} \operatorname{conjI} & \frac{A \wedge B \quad \llbracket A ; B \rrbracket \Longrightarrow C}{C} \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \operatorname{disjII/2} & \frac{A \vee B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \operatorname{disjE} \\
\frac{A \Longrightarrow B}{A \longrightarrow B} \text { impI } & \frac{A \longrightarrow B \quad A \quad B \Longrightarrow C}{C} \\
\frac{A \Longrightarrow \text { False }}{\neg A} \text { notI } & \frac{\neg A \quad A}{B} \text { notE }
\end{array}
\]

\section*{More Rules}
\[
\begin{gathered}
\frac{\mathrm{A} \wedge \mathrm{~B}}{\mathrm{~A}} \text { conjunct } 1 \quad \frac{\mathrm{~A} \wedge \mathrm{~B}}{\mathrm{~B}} \text { conjunct } 2 \\
\frac{\mathrm{~A} \longrightarrow \mathrm{~B} \quad \mathrm{~A}}{\mathrm{~B}} m p
\end{gathered}
\]

Compare to elimination rules:
\[
\frac{\mathrm{A} \wedge \mathrm{~B} \quad \llbracket \mathrm{~A} ; \mathrm{B} \rrbracket \Longrightarrow \mathrm{C}}{\mathrm{C}} \operatorname{conjE} \quad \frac{\mathrm{~A} \longrightarrow \mathrm{~B}}{\mathrm{~A}} \quad \mathrm{~A} \quad \mathrm{~B} \Longrightarrow \mathrm{C} \text { impE }
\]

\section*{Proof by Assumption}
\[
\frac{\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{i}} \ldots \mathrm{~A}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{i}}}
\]
- Proof method: assumption
- Use:
apply assumption
- Proves:
\[
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A
\]
by unifying \(A\) with one of the \(A_{i}\)

Natural Deduction for Propositional Logic
\[
\begin{gathered}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffI } \\
\frac{A=B \quad A}{B} \text { iffD1 } \frac{A=B \quad B}{A} \text { iffD2 }
\end{gathered}
\]

\section*{"Classical" Rules}
\[
\frac{\neg \mathrm{A} \Longrightarrow \text { False }}{\mathrm{A}} \text { ccontr } \quad \frac{\neg \mathrm{A} \Longrightarrow \mathrm{~A}}{\mathrm{~A}} \text { classical }
\]
- ccontr and classical are not derivable from the Natural Deduction rules.
- They make the logic "classical", i.e. "non-constructive or "non-intuitionistic".

\section*{Rule Application: The Rough Idea}
- Applying rule \(\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A\) to subgoal \(C\) :
- Unify \(A\) and \(C\)
- Replace \(C\) with \(n\) new subgoals: \(A_{1}^{\prime} \ldots A_{n}^{\prime}\)
- Backwards reduction, like in Prolog
- Example:

Rule: \(\quad\) ? PP; ?Q \(\Longrightarrow ? P \wedge ? Q\)
Subgoal: 1. \(\mathrm{A} \wedge \mathrm{B}\)
- Resulting Subgoals :
1. A
2. B

Rule Application: More Complete Idea

Applying rule \(\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A\) to subgoal \(C\) :
- Unify \(A\) and \(C\) with (meta)-substitution \(\sigma\)
- Specialize goal to \(\sigma(C)\)
- Replace \(C\) with \(n\) new subgoals: \(\sigma\left(A_{1}\right) \ldots \sigma\left(A_{n}\right)\)

Note: schematic variables in \(C\) treated as existential variables
Does there exist value for ? \(X\) in \(C\) that makes \(C\) true?
(Still not the whole story)

\section*{Applying Elimination Rules}
```

apply (erule <elim-rule>)

```

Like rule but also
- Unifies first premise of rule with an assumption
- Eliminates that assumption instead of conclusion

\section*{Application}

Rule:
\(\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A\)
Subgoal:
1. \(\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C\)

Substitution: \(\quad \sigma(A) \equiv \sigma(C)\)
New subgoals: \(\quad\) 1. \(\llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma\left(A_{1}\right)\)
n. \(\llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma\left(A_{n}\right)\)

Proves: \(\quad \llbracket \sigma\left(B_{1}\right) ; \ldots ; \sigma\left(B_{m}\right) \rrbracket \Longrightarrow \sigma(C)\)
Command: apply (rule \(<\) rulename \(>\) )
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Example} \\
\hline Rule: &  \\
\hline Subgoal: & 1. \(\lfloor\mathrm{X} ; \mathrm{A} \wedge \mathrm{B} ; \mathrm{Y} \rrbracket \Longrightarrow \mathrm{Z}\) \\
\hline Unification: & \[
\begin{aligned}
& ? P \wedge ? Q \equiv A \wedge B \text { and } ? R \equiv Z \\
& \{? P \mapsto A ; ? Q \mapsto B ; ? R \mapsto Z\}
\end{aligned}
\] \\
\hline New subgoal: & 1. \(\lceil\mathrm{X} ; \mathrm{Y} \rrbracket \Longrightarrow \llbracket \mathrm{A} ; \mathrm{B} \rrbracket \Longrightarrow \mathrm{Z}\) \\
\hline Same as: & 1. \([\mathrm{X} ; \mathrm{Y} ; \mathrm{A} ; \mathrm{B}] \Longrightarrow \mathrm{Z}\) \\
\hline
\end{tabular}```

