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Proof implies Truth

Theorem (Soundness)

Suppose {H1, . . . ,Hn} ` P is provable. Then, for every valuation v , if for
every i we have v |= Hi , then v |= P.

Proof.

Fix a proof of {H1, . . . ,Hn} ` P

Proceed by induction on the structure of the proof tree of
{H1, . . . ,Hn} ` P.

Ind Hyp: We may assume that, for every subproof of the proof of
{H1, . . . ,Hn} ` P, if v satisfies all the hypotheses of the result of the
subproof, then v satisfies the consequent of the result of the subproof.

Proceed by case analysis on the last rule used in the proof.

Case: Hyp

The P is among the Hi , so by assumption v |= P.
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Proof implies Truth

Proof.

Case: T I

Then P = T and v |= T always.

Case: And I

Then there exist A and B s.t. P = A ∧ B and {H1, . . . ,Hn} ` A and
{H1, . . . ,Hn} ` B are provable by subproofs of the proof of
{H1, . . . ,Hn} ` P.
By inductive hypothesis, since v |= Hi for i = 1 . . . n, have v |= A and
v |= B.
Thus v |= A ∧ B so v |= P.

Case OrL I

Then there exist A and B s.t. P = A ∨ B and {H1, . . . ,Hn} ` A is
provable by a subproof of {H1, . . . ,Hn} ` P.
By inductive hypothesis, since v |= Hi for i = 1 . . . n, have v |= A.
Thus v |= A ∨ B so v |= P.

Case OrR I same.
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Proof implies Truth

Proof.

Case: Not I

Then there exists A s.t. P = ¬A and {H1, . . . ,Hn,A} ` F is provable
by a subproof of the proof of {H1, . . . ,Hn} ` P.
Have v |= Hi for i = 1 . . . n, but not v |= F.
By Ind. Hyp. must have v 6|= A
Thus v |= ¬A.

Case: Imp I

Then there exist A and B s.t. P = A ⇒ B and {H1, . . . ,Hn,A} ` B is
provable by a subproof of the proof of {H1, . . . ,Hn} ` P.
By inductive hypothesis, since v |= Hi for i = 1 . . . n, if v |= A then
v |= B, so either have v |= B or v 6|= A.
Thus v |= A ⇒ B so v |= P.
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Proof implies Truth

Proof.

Case Not E

Then there exist A s.t. {H1, . . . ,Hn} ` ¬A and {H1, . . . ,Hn} ` A are
provable by subproofs of {H1, . . . ,Hn} ` P.
By inductive hypothesis, since v |= Hi for i = 1 . . . n, have v |= A and
v |= ¬A, which is imposible.
Thus either the last rule is not Not E or for some i we have v 6|= Hi ,
contradicting theorem assumption.

Case: Imp E

Then there exist A and B s.t. {H1, . . . ,Hn} ` A ⇒ B and
{H1, . . . ,Hn} ` A and {H1, . . . ,Hn,B} ` P are provable by subproofs
of {H1, . . . ,Hn} ` P.
By Ind. Hyp., since v |= Hi for i = 1 . . . n, have v |= A ⇒ B and
v |= A.
Therefore v |= B.
Again by Ind. Hyp, v |= P.
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Proof implies Truth
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Case: AndL E

Then there exist A and B s.t. {H1, . . . ,Hn} ` A ∧ B and
{H1, . . . ,Hn,A} ` P are provable by subproofs of {H1, . . . ,Hn} ` P.
By Ind. Hyp., since v |= Hi for i = 1 . . . n, have v |= A ∧ B, so v |= A
(and v |= B).
Again by Ind. Hyp, v |= P.

Case: AndR E same.

Case: F E

Then {H1, . . . ,Hn} ` F is provable by a subproof of {H1, . . . ,Hn} ` P.
By Ind. Hyp., since v |= Hi for i = 1 . . . n, have v |= F, which is
impossible.
Therefore, either last rule in proof not F E, or v¬ |= Hi , which violates
theorem assumption.
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Proof implies Truth

Proof.

Case: Or E

Then there exist A and B s.t. {H1, . . . ,Hn} ` A ∨ B and
{H1, . . . ,Hn,A} ` P and {H1, . . . ,Hn,B} ` P are all provable by
subproofs of {H1, . . . ,Hn} ` P.

By Ind. Hyp., since v |= Hi for i = 1 . . . n, have v |= A ∨ B.
Have at least one of v |= A or v |= B.
Case: v |= A

Ind. Hyp. implies v |= P.

Case: v |= B

Again by Ind. Hyp, v |= P.
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Truth does not imply Proof . . .

For given rules, can not prove A ∨ ¬A
Need an axiom.
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Model Checking for Propositions

Problem: Would like an efficient way to answer for a given
proposition P:

Does a given valuation satisfy P?

Valuation gives specific values for variables in P

Is P satisfiable?

Does there exist a valuation that makes P true?

Is P a tautology?

P is true in all valuations

Note: A general algorithm to answer the last can be used to answer the
second and vice versa.

Difficulty: Answering if P is satisfiable is NP-complete

Algorithms exist with good performance in general practice

BDDs are one such
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Binary Decision Trees

Binary decision tree is a (rooted, directected) edge and vertex labeled
tree with two types of verices – internal nodes, and leaves – such
that:

Leaves are labeled by true or false.

Leaves have no out edges
Internal nodes are labeled by atomic propositions (variables)
Internal nodes have exactly two out edges
Left edges labeled false and right edges labeled true.

Think 0 and 1

For each path (branch) in the tree, each atomic proposition may label
at most one vertex of that path.
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Binary Decision Trees

Binary decision trees can record the set of all models (and
non-models) of a proposition

Path records a valuation: out edge label gives value for variable
labeling an internal node

Any variable not on path can have any value
Leaf label says whether a valuation assigning those values to those
variables

Is a model (true, the tree accepts the valuation)
Or not a model (false, the tree rejects the valuation)

Each valuation matches exactly one branch
More than one valuation may (will) match a given branch
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Example:

(A ∧ B) ∨ (¬C )
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Example: Different Variable Ordering - Different Tree
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Example: Many Logically Equivalent Trees

(A ∧ B) ∨ (¬C )
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Alternate Syntax for Propositional Logic

Still have constants {T,F}
Still have countable set AP of propositional variables a.k.a. atomic
propositions

Only one ternary connective: the conditional if then else

First argument only a variable
Second and third arguments propositions
Example

if C then if B then if A then T else F else F else T

Represents the last tree above
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Semantics for Conditional Propositional Logic

Define when a valuation v satisfies a conditional proposition by

v |= T
v 6|= F
v |= if A then Pt else Pf iff

v(A) = true and v |= Pt or
v(A) = false and v |= Pf

Example: let v = {A 7→ true, B 7→ true,C 7→ true}

v |= if C then if B then if A then T else F else F else T

since
v(C ) = true and
v |= if B then if A then T else F else F since
v(B) = true and
v |= if A then T else F since
v(A) = true andv |= T
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Translating Original Propositions into if then else

Start with proposition P0 with variables v1, . . . vn

P[c/v ] is the proposition resulting from replacing all occurrences of
variable v with constant c

Let P be the result of evaluating every subexpression of P containing
no variables

Let P1 = if v1 then P0[T/v1] else P0[F/v1]

Let Pi = if vi then Pi−1[T/vi ] else Pi−1[F/vi ]

Pn is logically equivalent to P, but only uses if then else .

Valuation satisfies P if and only if it satisfies Pn

Pn depends on the order of variables v1, . . . vn
Pn directly corresponds to a binary decision tree
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Example:

P = (A ∧ B) ∨ (¬C ), variables {A, B, C}, A < B < C

P0 = (A ∧ B) ∨ (¬C )

P1 = if A then (T ∧ B) ∨ (¬C ) else (F ∧ B) ∨ (¬C )
P ′2 = if B then (if A then (T ∧ T) ∨ (¬C ) else (F ∧ T) ∨ (¬C ))

else (if A then (T ∧ F) ∨ (¬C ) else (F ∧ F) ∨ (¬C ))
P2 = if B then (if A then T ∨ (¬C ) else F ∨ (¬C ))

else (if A then F ∨ (¬C ) else F ∨ (¬C ))
P ′3 = if C then (if B then (if A then T ∨ (¬T) else F ∨ (¬T))

else (if A then F ∨ (¬T) else F ∨ (¬T)))
else (if B then (if A then T ∨ (¬F) else F ∨ (¬F))

else (if A then F ∨ (¬F) else F ∨ (¬F)))
P3 = if C then (if B then (if A then T else F)

else (if A then F else F))
else (if B then (if A then T else T)

else (if A then T else T))
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Example, cont.

P3 = if C then (if B then (if A then T else F)
else (if A then F else F))

else (if B then (if A then T else T)
else (if A then T else T))

P3 corresponds to second binary decision tree given earlier

Any proposition in strict if then else form corresponds directly to a
binary decision tree that accepts exactly the valuations that satisfy
(model) the proposition.
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Binary Decision Diagram

Binary decision trees may contain (much) redundancy

Binary Decision Diagram (BDD): Replace trees by (rooted) directed
acyclic graphs

Require all other conditions still hold

Generalization of binary decision trees

Allows for sharing of common subtrees.

Accepts / rejects valuations as with binary decision trees.

Elsa L Gunter CS477 Formal Software Dev Methods February 5, 2020 20 / 24



Example
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Reduced Ordered Binary Decision Diagrams

Problem: given proposition may correspond to many different BDDs

How to create a (compact) canonical BDD for a proposition such
that two different propositions are logically equivalent if and only if
they have the same (isomorphic) canonical BDD

Start: order propositional variables vi < vj .

Bryant showed you can obtain such a canonical BDD by requiring

Variables should appear in order on each path for root to leaf
No distinct duplicate (isomorphic) subtrees (including leaves)
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Achieving Canonical Form

Start with an Ordered BDD (all edges in correct order)

Repeat following until none apply

Remove duplicate leaves: Eliminate all but one leaf with a given label
and redirect all edges to the eliminated leaves to the remaining one

Remove duplicate nonterminals: If node n and m have the same
variable label, their left edges point to the same node and their right
edges point to the same node, remove one and redirect edges that
pointed to it to the other

Remove redundant tests: If both out edges of node n point to node
m, eliminate n and redirect all edges coming into n to m

Bryant gave procedure to do the above that terminates in linear time
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Example
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