
CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

January 22, 2020

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 1 / 1

Contact Information

Office: 2112 SC

Office Hours:

Wednesdays 1:30pm - 2:20pm
Fridays 1:30pm - 2:20pm
Also by appointment

Email: egunter@illinois.edu

No TA this semester

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 2 / 1

Course Website

http://courses.engr.illinois.edu/cs477

Main page – summary of news items

Policy – rules governing course

Lectures – syllabus and slides

MPs – information about homework

Exams – exam dates, preparation

Unit Projects – for 4 credit students

Resources – tools, subject references

FAQ

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 3 / 1

Some Course References

No required textbook

Software reliability methods, Doron A. Peled. Springer-Verlag New
York, Inc.

The Spin model checker – primer and reference manual, Gerard
J. Holzmann. Addison-Wesley, Pearson Education.

The Temporal Logic of Reactive and Concurrent
Systems:Specification, Zohar Manna and Amir Pnueli.
Springer-Verlag.

Model Checking, Edmund M. Clarke Jr., Orna Grumberg, Doron A.
Peled. MIT Press.

Reference papers found in resources on the course website

Concrete Semantics with Isabelle/HOL, Tobias Nipkov and Gerwin
Klein. Springer-Verlag. Also, downloadable from
www.concrete-semantics.org.

May add more over the semester

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 4 / 1

Course Grading

Homework 30%

Four to five theory homeworks
Four to five tool exercises

Tool exercises may require installing software on your computer or
access to EWS machines.

Handed in using git

Late submission penalty: 20% of total assignment value

Midterm 30%

Take-home – Due March 27

Final 40% – Nature to be announced – On or due May 12

Fourth Unit Credit – additional 33%

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 5 / 1

Why Formal Methods?

To find bugs.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 6 / 1

Why Formal Methods?

To find bugs.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 6 / 1

AT&T Network Outage

1/16/13 1:30 AMAT&T - Logopedia, the logo and branding site, AT&T logo old.svg

Page 1 of 2http://logos.wikia.com/wiki/AT&T

Evolution of the SBC and AT&T Brands: A Pictorial Timeline webcite

Contents

1964 – 1970

AT&T's logo is launched as a bell in 1964. It is called AT&T and Associated Companies.

1970 – 1983

In 1970, the bell is changed and the and Associated Companies is removed from its name. The AT&T font is changed either.

1983 – 1996

In 1983, the bell was changed into a globe.

1996 – 2005

In 1996, the globe has a shadow and became 3D.

2005-present

AT&T

1/16/13 2:31 AMAT&T - Logopedia, the logo and branding site, AT&T logo old.svg

Page 1 of 2http://logos.wikia.com/wiki/AT&T

Evolution of the SBC and AT&T Brands: A Pictorial Timeline webcite

Contents

1964 – 1970

AT&T's logo is launched as a bell in 1964. It is called AT&T and Associated Companies.

1970 – 1983

In 1970, the bell is changed and the and Associated Companies is removed from its name. The AT&T font is changed either.

1983 – 1996

In 1983, the bell was changed into a globe.

1996 – 2005

In 1996, the globe has a shadow and became 3D.

2005-present

AT&T

1990: AT&T # 4ESS long distance switch carried
all long distance calls in USA, including for Air
Traffic Control

Jan 15, 1990 switch in New York crashes; reboot
causes neighboring switches to crash, reboot

114 switches caught in oscillating crash - reboot
cycle

Over 60,000 people with no phone service

No inter-airport ATC communication

eventually amateur ham radio help with volunteer
network

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 8 / 1

AT&T Network Outage

1/16/13 1:30 AMAT&T - Logopedia, the logo and branding site, AT&T logo old.svg

Page 1 of 2http://logos.wikia.com/wiki/AT&T

Evolution of the SBC and AT&T Brands: A Pictorial Timeline webcite

Contents

1964 – 1970

AT&T's logo is launched as a bell in 1964. It is called AT&T and Associated Companies.

1970 – 1983

In 1970, the bell is changed and the and Associated Companies is removed from its name. The AT&T font is changed either.

1983 – 1996

In 1983, the bell was changed into a globe.

1996 – 2005

In 1996, the globe has a shadow and became 3D.

2005-present

AT&T

1/16/13 2:31 AMAT&T - Logopedia, the logo and branding site, AT&T logo old.svg

Page 1 of 2http://logos.wikia.com/wiki/AT&T

Evolution of the SBC and AT&T Brands: A Pictorial Timeline webcite

Contents

1964 – 1970

AT&T's logo is launched as a bell in 1964. It is called AT&T and Associated Companies.

1970 – 1983

In 1970, the bell is changed and the and Associated Companies is removed from its name. The AT&T font is changed either.

1983 – 1996

In 1983, the bell was changed into a globe.

1996 – 2005

In 1996, the globe has a shadow and became 3D.

2005-present

AT&T

Short-Term Fix: Reload earlier version of 4ESS OS
on all switches

April 1990: AT&T Bell Labs creates new center
Computing Sciences Research Center to try to
assure never again

I was its first employee

Bug:

Many contributing causes
One fatal contribution: a misplaced semicolon
Could have been caught by a stronger type system

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 9 / 1

Pentium Chip

Intel released Pentium in March 1993

In October 1994, Prof. Thomas Nicely
discovers that certain floating point divisions
produce errors

; error in 1 in 9 billion floating
point divides with random parameters

500 million US dollars + loss of image

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 10 / 1

Pentium Chip

Intel released Pentium in March 1993

In October 1994, Prof. Thomas Nicely
discovers that certain floating point divisions
produce errors; error in 1 in 9 billion floating
point divides with random parameters

500 million US dollars + loss of image

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 10 / 1

Pentium Chip

Intel released Pentium in March 1993

In October 1994, Prof. Thomas Nicely
discovers that certain floating point divisions
produce errors; error in 1 in 9 billion floating
point divides with random parameters

500 million US dollars + loss of image

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 10 / 1

Ariane 5 (June 1996)

Ariane 5 rocket explodes 40 secs into it maiden launch

due to a
software bug!

A conversion of a 64-bit floating point number to a 16-bit unsigned
integer was erroneously applied to a number outside the valid range

Loss of more than 500 million US dollars

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 11 / 1

Ariane 5 (June 1996)

Ariane 5 rocket explodes 40 secs into it maiden launch due to a
software bug!

A conversion of a 64-bit floating point number to a 16-bit unsigned
integer was erroneously applied to a number outside the valid range

Loss of more than 500 million US dollars

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 11 / 1

Ariane 5 (June 1996)

Ariane 5 rocket explodes 40 secs into it maiden launch due to a
software bug!

A conversion of a 64-bit floating point number to a 16-bit unsigned
integer was erroneously applied to a number outside the valid range

Loss of more than 500 million US dollars

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 11 / 1

Ariane 5 (June 1996)

Ariane 5 rocket explodes 40 secs into it maiden launch due to a
software bug!

A conversion of a 64-bit floating point number to a 16-bit unsigned
integer was erroneously applied to a number outside the valid range

Loss of more than 500 million US dollars

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 11 / 1

Boeing 777

Problems with databus and flight management software delay
assembly and integration of fly-by-wire system by more than one year

Certified to be safe in April 1995

Total development cost 3 billion

; software integration and validation
costs were about one-third.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 12 / 1

Boeing 777

Problems with databus and flight management software delay
assembly and integration of fly-by-wire system by more than one year

Certified to be safe in April 1995

Total development cost 3 billion

; software integration and validation
costs were about one-third.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 12 / 1

Boeing 777

Problems with databus and flight management software delay
assembly and integration of fly-by-wire system by more than one year

Certified to be safe in April 1995

Total development cost 3 billion

; software integration and validation
costs were about one-third.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 12 / 1

Boeing 777

Problems with databus and flight management software delay
assembly and integration of fly-by-wire system by more than one year

Certified to be safe in April 1995

Total development cost 3 billion; software integration and validation
costs were about one-third.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 12 / 1

Malaysian Airlines

A Boeing 777 plane operated by Malaysian Airlines, flying from Perth
to Kuala Lumpur in August 2005, experiences problems

The plane suddenly zoomed up 3000 feet. The pilot’s efforts at gaining
manual control succeeded after a physical struggle, and the passengers
were safely flown back to Australia.

Cause: Defective software provided incorrect data about the plane’s
speed and accelaration.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 13 / 1

Malaysian Airlines

A Boeing 777 plane operated by Malaysian Airlines, flying from Perth
to Kuala Lumpur in August 2005, experiences problems

The plane suddenly zoomed up 3000 feet. The pilot’s efforts at gaining
manual control succeeded after a physical struggle, and the passengers
were safely flown back to Australia.

Cause: Defective software provided incorrect data about the plane’s
speed and accelaration.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 13 / 1

Malaysian Airlines

A Boeing 777 plane operated by Malaysian Airlines, flying from Perth
to Kuala Lumpur in August 2005, experiences problems

The plane suddenly zoomed up 3000 feet. The pilot’s efforts at gaining
manual control succeeded after a physical struggle, and the passengers
were safely flown back to Australia.

Cause: Defective software provided incorrect data about the plane’s
speed and accelaration.

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 13 / 1

Malaysian Airlines
Wall Street Journal Analysis

“Plane makers are accustomed to testing metals and plastics under
almost every conceivable kind of extreme stress, but it’s impossible to
run a big computer program through every scenario to detect bugs
that invariably crop up.”

“. . . problems in aviation software stem not from bugs in code of a
single program but rather from the interaction between two different
parts of a plane’s computer system.”

“. . . Boeing issued a safety alert advising, . . . , pilots should
immediately disconnect autopilot and might need to exert an
unusually strong force on the controls for as long as two minutes to
regain normal flight.”

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 14 / 1

Malaysian Airlines
Wall Street Journal Analysis

“Plane makers are accustomed to testing metals and plastics under
almost every conceivable kind of extreme stress, but it’s impossible to
run a big computer program through every scenario to detect bugs
that invariably crop up.”

“. . . problems in aviation software stem not from bugs in code of a
single program but rather from the interaction between two different
parts of a plane’s computer system.”

“. . . Boeing issued a safety alert advising, . . . , pilots should
immediately disconnect autopilot and might need to exert an
unusually strong force on the controls for as long as two minutes to
regain normal flight.”

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 14 / 1

Malaysian Airlines
Wall Street Journal Analysis

“Plane makers are accustomed to testing metals and plastics under
almost every conceivable kind of extreme stress, but it’s impossible to
run a big computer program through every scenario to detect bugs
that invariably crop up.”

“. . . problems in aviation software stem not from bugs in code of a
single program but rather from the interaction between two different
parts of a plane’s computer system.”

“. . . Boeing issued a safety alert advising, . . . , pilots should
immediately disconnect autopilot and might need to exert an
unusually strong force on the controls for as long as two minutes to
regain normal flight.”

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 14 / 1

Why Formal Methods?

To catch bugs

To eliminate whole classes of errors

Contrast: Testing
Testing Formal Methods
Can find errors in systems Can find errors in systems

Gen works on actual code Gen work on abstract model
maybe simulated env of code and environment

Can’t show errors don’t exist Can show certain types
of errors can’t exist

Can’t show system error-free Can’t show system error-free

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 15 / 1

Formal Methods Limitations

Can be expensive

Only used fully on safety-critical system components

Can only prove model of system satisfies given property
(“requirements”)

Model may be wrong
requirements may be inadequate or wrong

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 16 / 1

What Are Formal Methods?

Method of finding errors in

Hardware
Software
Distributed Systems
Computer-Human Operator Systems
. . .

Not a way to guarantee nothing will go wrong

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 17 / 1

What Are Formal Methods?

Formal Methods are the application of rigorous mathematics to the

specification
modeling
implemetation, and
verifcation

of systems with programmable components

Software
Hardware
Control Systems
Combined Computer - Human Operator Systems, . . .

via computer programs implementing the math

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 18 / 1

What Types of Maths?

Sets, Graphs, Trees

Automata

Logic and Proof Theory, Temporal Logics

Process Algebras

Induction, especially structural induction and well-founded induction,
inductive relations

Category Theory

Probability

. . .

Differential Equations, PDEs

. . .

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 19 / 1

What Types of Tools?

Type Checkers, Type Inference

Java, ML (Ocaml, Standard ML), Haskell, . . .

Model Checkers, SAT solvers

SPIN, NuSMV, Mocha, SAL, . . .

Interactive Theorem Provers

Isabelle, Coq, HOL4, PVS, . . .

Runtime Monitoring

JavaMOP

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 20 / 1

Course Overview

Review of basic math underlying most formal methods

Intro to interactive theorem proving

Intro to Isabelle/HOL

Floyd-Hoare Logic (aka Axiomatic Semantics)

Verification Conditions
Verification Condition Generators (VCGs)

Operation Semantics

Structured Oper. Sem., Transition Sem.

Models of Concurrency

Finite State Automata, Buchi Automata

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 21 / 1

Course Overview

Temporal Logics

LTL

Model Checkers

Spin

Abstract Interpretation

Type Systems

Type Systems as Abstract Interpretation

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 22 / 1

Course Objectives

How to do proofs in Hoare Logic, and what role a loop invaraint plays

How to use finite automata to model computer systems

How to express properties of concurrent systems in a temporal logic

How to use a model checker to verify / falsify a temporal safety
property of a concurrent system

The connection between types and propgram properties

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 23 / 1

Propositional Logic

The Language of Propositional Logic

Begins with constants {T,F}
Assumes countable set AP of propositional variables, a.k.a.
propositional atoms, a.k.a. atomic propositions

Assumes logical connectives: ∧ (and); ∨ (or); ¬ (not); ⇒ (implies);
⇔ = (if and only if)

The set of propositional formulae PROP is the inductive closure of
these as follows:

{T,F} ⊆ PROP
AP ⊆ PROP
if A ∈ PROP then (A) ∈ PROP and ¬A ∈ PROP
if A ∈ PROP and B ∈ PROP then (A ∧ B) ∈ PROP,
(A ∨ B) ∈ PROP, (A⇒ B) ∈ PROP, (A⇔ B) ∈ PROP.
Nothing else is in PROP

Informal definition; formal definition requires math foundations, set
theory, fixed point theorem ...

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 24 / 1

Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

Mathematical set of values used as meaning of propositions

Interpretation function giving meaning to props built from logical
connectives, via structural recursion

Standard Model of Propositional Logic

B = {true, false} boolean values

v : AP → B a valuation

Interpretation function . . .

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 25 / 1

Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

Standard interpretation Iv defined by structural induction on
formulae:

Iv (T) = true and Iv (F) = false
If a ∈ AP then Iv (a) = v(a)
For p ∈ PROP, if Iv (p) = true then Iv (¬p) = false, and if
Iv (p) = false then Iv (¬p) = true
For p, q ∈ PROP

If Iv (p) = true and Iv (q) = true, then Iv (p ∧ q) = true, else
Iv (p ∧ q) = false
If Iv (p) = true or Iv (q) = true, then Iv (p ∨ q) = true, else
Iv (p ∨ q) = false
If Iv (q) = true or Iv (p) = false, then Iv (p ⇒ q) = true, else
Iv (p ⇒ q) = false
If Iv (p) = Iv (q) then Iv (p ⇔ q) = true, else Iv (p ⇔ q) = false

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 26 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true

false true true true true

true false

false false true false false

false true

true false true true false

false false

true false false true true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true false

true true true true

true false false

false true false false

false true true

false true true false

false false true

false false true true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true false true

true true true

true false false false

true false false

false true true false

true true false

false false true false

false true true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true false true true

true true

true false false false true

false false

false true true false true

true false

false false true false false

true true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true false true true true

true

true false false false true false

false

false true true false true true

false

false false true false false true

true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true false true true true true

true false false false true false false

false true true false true true false

false false true false false true true

Elsa L Gunter CS477 Formal Software Dev Methods January 22, 2020 27 / 1

