CS477 Formal Software Dev Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

January 18, 2018

Propositional Logic

The Language of Propositional Logic

- Begins with constants {T, F}
- Assumes countable set AP of propositional variables, a.k.a. propositional atoms, a.k.a. atomic propositions
- Assumes logical connectives: ∧ (and); ∨ (or); ¬ (not); ⇒ (implies); \Leftrightarrow = (if and only if)
- The set of propositional formulae PROP is the inductive closure of these as follows:
 - {**T**, **F**} ⊆ *PROP AP* ⊆ *PROP*

 - if $A \in PROP$ then $(A) \in PROP$ and $\neg A \in PROP$
 - if $A \in PROP$ and $B \in PROP$ then $(A \land B) \in PROP$, $(A \lor B) \in PROP$, $(A \Rightarrow B) \in PROP$, $(A \Leftrightarrow B) \in PROP$.
 - Nothing else is in PROP
- Informal definition; formal definition requires math foundations, set theory, fixed point theorem ...

Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

- Mathematical set of values used as meaning of propositions
- Interpretation function giving meaning to props built from logical connectives, via structural recursion

Standard Model of Propositional Logic

- $\mathcal{B} = \{\text{true}, \text{false}\}$ boolean values
- $v : AP \rightarrow \mathcal{B}$ a valuation
- Interpretation function . . .

Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

- ullet Standard interpretation \mathcal{I}_{V} defined by structural induction on formulae:
 - $\mathcal{I}_{\nu}(T) = \text{true and } \mathcal{I}_{\nu}(F) = \text{false}$
 - If $a \in AP$ then $\mathcal{I}_{v}(a) = v(a)$
 - For $p \in PROP$, if $\mathcal{I}_{\nu}(p) = \text{true}$ then $\mathcal{I}_{\nu}(\neg p) = \text{false}$, and if $\mathcal{I}_{\nu}(p) = \mathrm{false} \ \mathrm{then} \ \mathcal{I}_{\nu}(\neg p) = \mathrm{true}$
 - For $p, q \in PROP$
 - $\quad \text{ If } \mathcal{I}_{\nu}(p) = \mathrm{true} \text{ and } \mathcal{I}_{\nu}(q) = \mathrm{true} \text{, then } \mathcal{I}_{\nu}(p \wedge q) = \mathrm{true} \text{, else}$ $\mathcal{I}_{\nu}(p \wedge q) = \text{false}$
 - If $\mathcal{I}_{\nu}(p) = \text{true}$ or $\mathcal{I}_{\nu}(q) = \text{true}$, then $\mathcal{I}_{\nu}(p \vee q) = \text{true}$, else $\mathcal{I}_{\nu}(p \vee q) = \text{false}$
 - If $\mathcal{I}_{\nu}(q)=\mathrm{true}$ or $\mathcal{I}_{\nu}(p)=\mathrm{false}$, then $\mathcal{I}_{\nu}(p\Rightarrow q)=\mathrm{true}$, else $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{false}$
 - $\bullet \ \text{ If } \ \mathcal{I}_{\nu}(\rho) = \mathcal{I}_{\nu}(q) \ \text{then } \ \mathcal{I}_{\nu}(\rho \Leftrightarrow q) = \mathrm{true}, \ \text{else } \ \mathcal{I}_{\nu}(\rho \Leftrightarrow q) = \mathrm{false}$

Truth Tables

Interpretation function often described by truth table

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true					
true	false					
false	true					
false	false					

Truth Tables

Interpretation function often described by truth table

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false				
true	false	false				
false	true	true				
false	false	true				

Truth Tables

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true			
true	false	false	false			
false	true	true	false			
false	false	true	false			

Truth Tables

Interpretation function often described by truth table

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	<i>p</i> ⇔ <i>q</i>
true	true	false	true	true		
true	false	false	false	true		
false	true	true	false	true		
false	false	true	false	false		

Truth Tables

Interpretation function often described by truth table

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	
true	false	false	false	true	false	
false	true	true	false	true	true	
false	false	true	false	false	true	

Truth Tables

Interpretation function often described by truth table

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

Modeling Propositional Formulae

- ullet (\mathcal{B},\mathcal{I}) is the standard model of proposition logic
- Given valuation v and proposition $p \in PROP$, write $v \models p$ iff $\mathcal{I}_{v}(p) = \text{true}$
 - More fully written as $\mathcal{B}, \mathcal{I}, v \models p$

 - Say v satisfies p, or v models p
 Write v ⊭ p if T_v(p) = false
- p is satisfiable if there exists valuation v such that $v \models p$
- p is valid, a.k.a. a tautology if for every valuation v we have $v \models p$
- p is logically equivalent to q, $p \equiv q$ if for every valuation, v, we have $v \models p \text{ iff } v \models q$
 - Claim: Logical equivalence is an equivalence relation

Example Tautology

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

l	Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
	true	true			
ĺ	true	false			
ĺ	false	true			
ĺ	false	false			

Example Tautology

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true		
true	false	false		
false	true	true		
false	false	true		

Example Tautology

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	
true	false	false	true	
false	true	true	true	
false	false	true	false	

Example Tautology

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	true
true	false	false	true	true
false	true	true	true	true
false	false	true	false	true

Example Tautology – Your Turn

Example: Logical Equivalence

$$A \Rightarrow B \equiv ((\neg A) \lor B)$$

A	В	$A \Rightarrow B$	$\neg A$	$(\neg A) \lor B$
true	true	true	false	true
true	false	false	false	false
false	true	true	true	true
false	false	true	true	true

More Useful Logical Equivalences

$$\neg \neg A \equiv A \qquad \neg T \equiv F \qquad \neg F \equiv T \\
(A \lor A) \equiv A \qquad (A \lor B) \lor C \equiv A \lor (B \lor C) \\
(A \land A) \equiv A \qquad (A \land B) \land C \equiv A \land (B \land C) \\
A \lor B \equiv B \lor A \qquad \neg (A \lor B) \equiv (\neg A) \land (\neg B) \\
A \land B \equiv B \land A \qquad \neg (A \land B) \equiv (\neg A) \lor (\neg B) \\
(A \land \neg A) \equiv F \qquad A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \\
(A \lor \neg A) \equiv T \qquad (A \land B) \lor C \equiv (A \lor C) \land (B \lor C) \\
(T \land A) \equiv A \qquad A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \\
(T \lor A) \equiv T \qquad (A \land B) \lor C \equiv (A \land C) \lor (B \land C) \\
(F \land A) \equiv F \qquad (F \lor A) \equiv A$$

Logical Equivalence a Structural Congruence

Theorem

Logical equivalence is a structural congruence. That is, if $p \equiv p'$ and $q \equiv q'$ then

- $p \wedge q \equiv p' \wedge q'$

Logical Equivalence a Structural Congruence

Proof.

- Assume $p \equiv p'$ and $q \equiv q'$
- **Hyp**: Then for all valuations v, $v \models p$ iff $v \models p'$ and $v \models q$ iff $v \models q'$, i.e. $\mathcal{I}_{v}(p) = \text{true iff } \mathcal{I}_{v}(p') = \text{true and } \mathcal{I}_{v}(q) = \text{true iff }$ $\mathcal{I}_{\nu}(q') = \text{true}$
- Case 4: Show $p \Rightarrow q \equiv p' \Rightarrow q'$
 - Other cases done same way
- Need to show for all v, $\mathcal{I}_v(p\Rightarrow q)=\mathrm{true}$ iff $\mathcal{I}_v(p'\Rightarrow q')=\mathrm{true}$
- ullet Need to show if $\mathcal{I}_{\nu}(p\Rightarrow q)=\mathrm{true}$ then $\mathcal{I}_{\nu}(p'\Rightarrow q')=\mathrm{true}$, and if $\mathcal{I}_{\nu}(p'\Rightarrow q')=\mathrm{true}\;\mathrm{then}\;\mathcal{I}_{\nu}(p\Rightarrow q)=\mathrm{true}\;$

Logical Equivalence a Structural Congruence

Proof.

- **●** (**⇒**)
 - Assume $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$
 - \bullet By closure property of inductive definition of $\mathcal{I},$ either $\mathcal{I}_{v}(\mathit{q}) = \mathrm{true}$ or
 - Therefore, by **Hyp**, either $\mathcal{I}_{\nu}(q') = \text{true or } \mathcal{I}_{\nu}(p') = \text{false}$
 - \bullet since ${\cal B}$ has only two elements, and ${\cal I}_{\nu}$ total (proof?)
 - ullet By ${\mathcal I}$ def, have ${\mathcal I}_{\scriptscriptstyle V}({p^\prime}\Rightarrow {q^\prime})$
- **●** (←=)

Non-standard Model of Propositional Logic

Other models possible

Example:

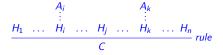
- $\mathcal{C} = \{\text{true}, \text{false}, \bot\}$
- ullet Valuations assign values in ${\cal C}$ to propositional atoms
- If $\mathcal{J}_w(p) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, otherwise same as for \mathcal{I}
- $\mathcal{J}_w(p) = \bot$ or $\mathcal{J}_w(q) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, $\mathcal{J}_w(p \land q) = \bot$, $\mathcal{J}_w(p \lor q) = \bot$, $\mathcal{J}_w(p \Rightarrow q) = \bot$, and $\mathcal{J}_w(p \Leftrightarrow q) = \bot$; otherwise same as for ${\cal I}$
- Note: $A \lor \neg A \not\equiv \mathbf{T}$
- Other variants possible

Proofs in Propositional Logic

- Natural Deduction proof is tree and a discharge function
 - Nodes are instances of inference rules
 - Leaves are assumptions of subproofs
 - Discharge function maps each leaf of the tree to an ancestor as prescribed by the inference rules

Natural Deduction Inference Rules

- Inference rule has hypotheses and conclusion
- Conclusion a single proposition
- Hypotheses zero or more propositions, possibly with (discharged)
- Rule with no hypotheses called an axiom
- Inference rule graphically presents as



Natural Deduction Inference Rules

- Inference rules associated with connectives
- Two main kinds of inference rules:
 - Introduction says how to conclude proposition made from connective

Natural Deduction Inference Rules

- Inference rules associated with connectives
- Two main kinds of inference rules:
 - Introduction says how to conclude proposition made from connective is true
 - Example:

Natural Deduction Inference Rules

• Two main kinds of inference rules:

• Inference rules associated with connectives

is true

Natural Deduction Inference Rules

- Inference rules associated with connectives
- Two main kinds of inference rules:
 - Introduction says how to conclude proposition made from connective is true
 - Example:

$$\begin{array}{c}
A \\
\vdots \\
B \\
\hline
A \rightarrow B
\end{array}$$
 Imp

• Eliminations – says how to use a proposition made from connective to prove result

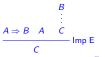
 $\frac{B}{A \Rightarrow B} \operatorname{Imp} I$

• Eliminations – says how to use a proposition made from connective to prove result

• Introduction – says how to conclude proposition made from connective

Example:

Example:



Introduction Rules

Truth Introduction:

And Introduction:

$$\frac{1}{T}$$
TI

$$\frac{A \quad B}{A \land B}$$
 And $A \land B$

Or Introduction:

$$\frac{A}{A \times A \times B}$$
 Or_L

$$\frac{A \vee B}{B \vee A \vee B}$$
 Or_R I

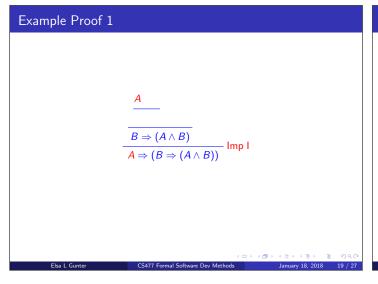
Not Introduction:

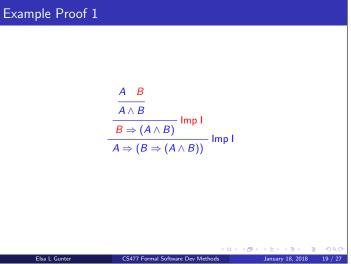
Implication Introduction:

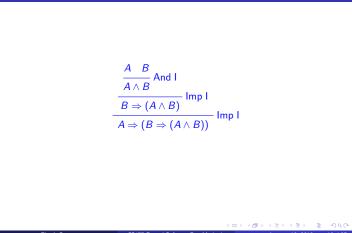
No False Introduction

Example Proof 1

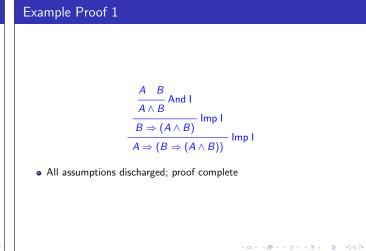
$$A \Rightarrow (B \Rightarrow (A \land B))$$

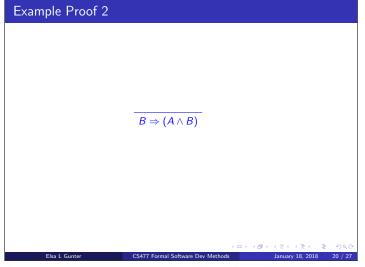


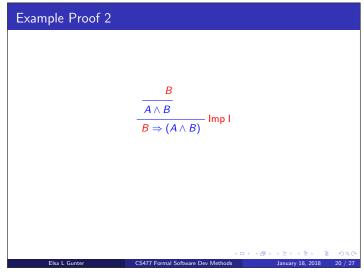




Example Proof 1







Example Proof 2

$$\frac{\frac{A \quad B}{A \wedge B} \text{And I}}{B \Rightarrow (A \wedge B)} \text{Imp I}$$

Isa L Gunter CS477 Formal Software Dev Methods January 18, 2

Example Proof 2

$$\frac{\frac{A? \quad B}{A \land B} \text{ And I}}{B \Rightarrow (A \land B)} \text{ Imp I}$$

Example Proof 2

$$\frac{\frac{A \quad B}{A \land B} \text{ And I}}{B \Rightarrow (A \land B)} \text{ Imp I}$$

- Closed proofs must discharge all hypotheses
- \bullet Otherwise have theorem relative to / under undischarged hypotheses
- ullet Here have proved "Assuming A, we have $B\Rightarrow (A\wedge B)$

Discharging Hypothesis

$$A \Rightarrow (A \wedge A)$$

+ロト・(**が**) + (さ) + (き) - き - かく()

a L Gunter CS477 Formal Software Dev Method

January 18, 2018 21 / 27

Discharging Hypothesis

$$\frac{\frac{A \quad A}{A \land A} \text{ And I}}{A \Rightarrow (A \land A)} \text{ Imp I}$$

<□> <<mark>□</mark>> <<u>□</u>> <<u>□</u> < <u>□</u> <

Discharging Hypothesis

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

 Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

(□) (∰) (E) (E) E 9Q@

Discharging Hypothesis

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I} \qquad \qquad \overline{A \Rightarrow (B \Rightarrow A)}$$

• Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

Discharging Hypothesis

$$\frac{\frac{A}{A \wedge A} \text{And I}}{A \Rightarrow (A \wedge A)} \text{Imp I} \qquad \frac{\frac{A}{B \Rightarrow A} \text{Imp I}}{A \Rightarrow (B \Rightarrow A)} \text{Imp I}$$

• Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

Discharging Hypothesis

$$\frac{\frac{A \quad A}{A \land A} \text{And I}}{A \Rightarrow (A \land A)} \text{Imp I} \qquad \frac{\frac{A}{B \Rightarrow A} \text{Imp I}}{A \Rightarrow (B \Rightarrow A)} \text{Imp I}$$

• Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

Discharging Hypothesis

$$\frac{A \quad A}{A \wedge A} \text{And I}$$

$$A \Rightarrow (A \wedge A) \quad \text{Imp I}$$

$$A \Rightarrow (B \Rightarrow A) \quad \text{Imp I}$$

$$A \Rightarrow (B \Rightarrow A) \quad \text{Imp I}$$

- Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis
- Or may discharge none at all
- Every assumption instance discharged only once

Your Turn

$$A \Rightarrow (A \lor B)$$

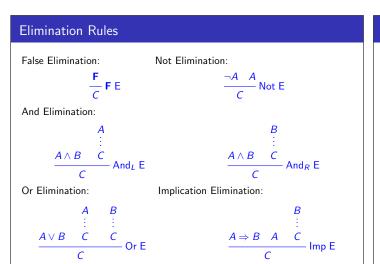
Elimination Rules

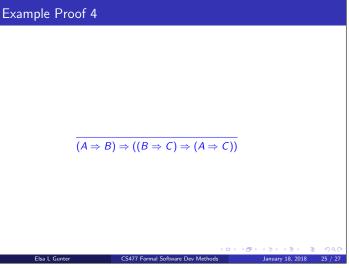
- So far, have rules to "introduce" logical connectives into propositions
- No rules for how to "use" logical connectives
 - No assumptions with logical connectives
- Need "elimination" rules
- Example: Can't prove

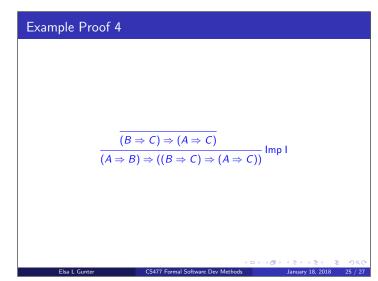
$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

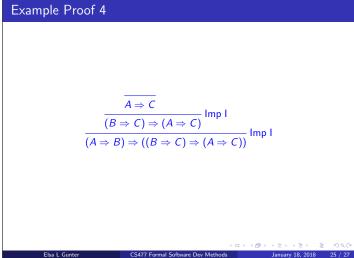
with what we have so far

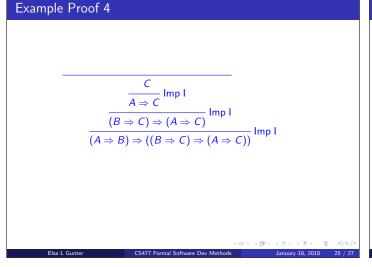
- Elimination rules assume assumption with a connective; have general conclusion
 - Generally needs additional hypotheses

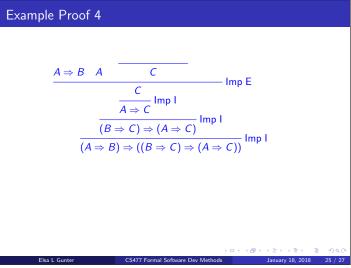




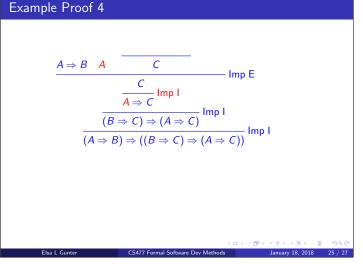


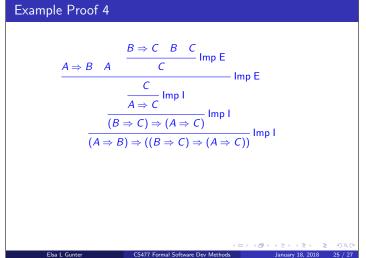


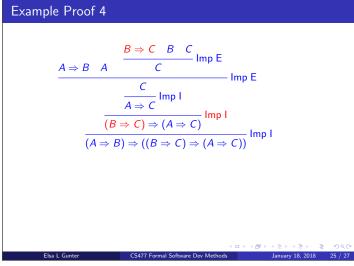


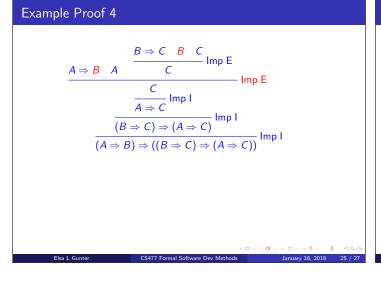


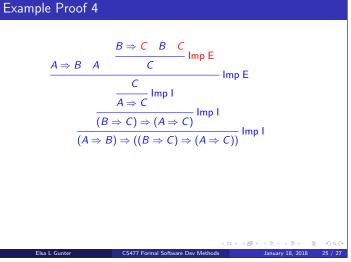
Example Proof 4 $\frac{A \Rightarrow B \quad A \qquad C}{C \qquad \text{Imp I}}$ $\frac{C}{A \Rightarrow C \quad \text{Imp I}}$ $\frac{(B \Rightarrow C) \Rightarrow (A \Rightarrow C)}{(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))}$ Imp I











Some Well-Known Derived Rules

Modus Ponens

$$\frac{A \Rightarrow B \quad A}{B} \text{MP}$$

$$\frac{A \Rightarrow B \quad A \quad B}{B} \operatorname{Imp} \mathsf{E}$$

Left Conjunct

$$\frac{A \wedge B}{A}$$
 AndL

$$\frac{A \wedge B \quad A}{A} \operatorname{And}_{L} \mathsf{E}$$

Right Conjunct

$$\frac{A \wedge B}{B}$$
 AndR

$$\frac{A \wedge B \quad A}{A} \operatorname{And}_{R} \mathsf{E}$$

←□→ ←□→ ←∃→ ←∃→ □

sa L Gunter CS4

CS477 Formal Software Dev Method

ary 18, 2018 26

Your Turn

$$(A \wedge B) \Rightarrow (A \vee B)$$

←□→ ←□→ ←□→ ←□→ □ ←○○

unter CS477 Formal Software Dev I

nuary 18, 2018 27 / 27