
MP 2 – Modeling
CS 477 – Spring 2013

Revision 1.1

Assigned April 30, 2014
Due May 7, 2014, 9:00 PM
Extension 48 hours (penalty 20% of total points possible)

1 Change Log
1.1 Corrected the Extra Credit problem by adding “with both the gates closed” to the end of the sentence.

1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to test the student’s ability to

• build a model for a system in SPIN

• use SPIN and LTL to specify and verify a system based on English specifications

Another purpose of MPs and HWs in general is to provide a framework to study for the exam. Several of the
questions on the exam will appear similar to HW and MP problems. A final purpose for MPs is to give you ideas that
can help with fourth credit projects.

3 Turn-In Procedure
The pdf for this assignment (mp2.pdf) should be found in the mps/mp2/ subdirectory of your svn directory for this
course. You should put code answering the problem below in the file mp2.pml. You will also be asked to create three
files containing LTL formulae, ltl1.pml, ltl2.pml, ltl3.pml, and ltl4.pml. Your completed mp2.pml,
ltl1.pml, ltl2.pml, ltl3.pml, and ltl4.pml files should be put in the mps/mp2/ subdirectory of your
svn directory (where mp2.pdf) was originally found) and committed as follows:

svn add mp2.pml ltl1.pml ltl2.pml ltl3.pml ltl4.pml
svn commit -m "Turning in mp2"

If you do the extra credit problem, you will also need the file ltlX.pml and you will need the add it to the files in
the svn add.

Please read the Instructions for Submitting Assignments in

http://courses.engr.illinois.edu/cs477/mps/index.html

4 Modeling in Promela
Recollect the example of the candy machine given as an example of a labeled transition system in the slides
http://courses.engr.illinois.edu/cs477/sp2013/lectures/19-lts.pdf.
In that example, we gave a description of the candy machine, but not of the customers who would interact with it.
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Suppose we wish to model two honest customers, each of whom wants to buy some number of just one type of candy,
KitKat or MarsBar respectively. The following is Promela code that can model this in the case where each customer
wants two candies, for a total of four:

/* File: candy.pml */

mtype {Pay, KitKat, MarsBar}

byte candies_paid = 0;
byte candies_delivered = 0;

chan slot = [2] of {mtype}
chan candy_choice = [1] of {mtype}
chan candy_tray = [2] of {mtype}

proctype Kcustomer(byte k){
{do
:: atomic{slot ! Pay;

printf("Payment made by Kcustomer\n");
candies_paid = candies_paid + 1;
printf("candies_paid == %d\n", candies_paid)};

atomic{candy_choice ! KitKat;
printf("Kcustomer chose a KitKat\n")};

atomic{candy_tray ? KitKat;
k = k - 1;
printf("Kcustomer took a KitKat\n")}

od}
unless
{k == 0}

}

proctype Mcustomer(byte m){
{do
:: atomic{slot ! Pay;

printf("Payment made by Mcustomer\n");
candies_paid = candies_paid + 1;
printf("candies_paid == %d\n", candies_paid)};

atomic{candy_choice ! MarsBar;
printf("Mcustomer chose a MarsBar\n")};

atomic{candy_tray ? MarsBar;
m = m - 1;
printf("Mcustomer took a MarsBar\n")}

od}
unless
{m == 0}

}

proctype machine (byte c) {
mtype choice;
{do
:: printf("Insert coin.\n");

slot ? Pay;
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printf("Make choice: KitKat or MarsBar\n");
candy_choice ? choice;
atomic{candy_tray ! choice;

candies_delivered = candies_delivered +1;
printf("Take candy\n")};

c = c - 1
od}

unless
{c == 0}

}

active proctype monitor () {
assert (candies_delivered - candies_paid != 1)
/* never give out more than has already been paid for */

}

init {
run machine(4);
run Kcustomer(2);

If we run SPIN in simulator mode, we can see a sample behavior as follows:

bash-3.2$ spin candy.pml
Insert coin.

Payment made by Kcustomer
Payment made by Mcustomer

Kcustomer chose a KitKat
Make choice: KitKat or MarsBar

Mcustomer chose a MarsBar
Take candy

Kcustomer took a KitKat
Payment made by Kcustomer

Insert coin.
Make choice: KitKat or MarsBar
Take candy
Insert coin.

Mcustomer took a MarsBar
Payment made by Mcustomer

Make choice: KitKat or MarsBar
Mcustomer chose a MarsBar

Take candy
Kcustomer chose a KitKat

Insert coin.
Make choice: KitKat or MarsBar
Take candy

5 processes created
bash-3.2$

This still leaves us needing to know whether our code’s behavior is always correct: Does the machine always get paid
before it gives out candy, and do the customers get all the candy they want? We can check that the machine always
gets paid first by checking that the assert inside the monitor process is always true. The second condition, that the
customers get all the candy they want can be checked by checking that every process terminates correctly. We can do
both of these by using spin in its model checking mode:
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bash-3.2$ spin -a candy.pml
bash-3.2$ gcc -o pan pan.c
bash-3.2$ ./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 6.2.4 -- 8 March 2013)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 76 byte, depth reached 70, errors: 0
703 states, stored
489 states, matched

1192 transitions (= stored+matched)
752 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.070 equivalent memory usage for states (stored*(State-vector + overhead))
0.284 actual memory usage for states

128.000 memory used for hash table (-w24)
0.611 memory used for DFS stack (-m10000)

128.806 total actual memory usage

unreached in proctype Kcustomer
(0 of 18 states)
unreached in proctype Mcustomer
(0 of 18 states)
unreached in proctype machine
(0 of 15 states)
unreached in proctype monitor
(0 of 2 states)
unreached in init
(0 of 4 states)

pan: elapsed time 0 seconds
bash-3.2$

The absence of complaint about assertion violations or invalid end states tells us that we have verified the properties
we set out.

We can also use ltl formula to describe safety. From the customers perspective, the candy machine is “safety” if
it always gives candy after the customer has paid. (We will omit the kind here, since the program I gave only counts
candies delivered in total, and not by kind.) To rephrase this as the absence of bad, we can say that it’s never the case
that the customer pays for more candy than is eventually delivered. Thus the hazard to be avoided for the customer
may be stated as

<> [] (candies_paid - candies_delivered > 0)
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which we have put in the file candyneverltl.pml. We may convert this into a “never” claim and store the result
in the file candynever.pml by the command:

spin -F candyneverltl.pml > candynever.pml

The resultant “never” claim is the following:

never { /* <> [] (candies_paid - candies_delivered < 0) */
T0_init:

do
:: ((candies_paid - candies_delivered < 0)) -> goto accept_S4
:: (1) -> goto T0_init
od;

accept_S4:
do
:: ((candies_paid - candies_delivered < 0)) -> goto accept_S4
od;

}

If we then build and execute the verfier by

spin -a -N candynever.pml candy.pml
gcc -o pan pan.c
./pan -a

we get the output

bash-3.2$ ./pan -a
warning: for p.o. reduction to be valid the never claim must be stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)

(Spin Version 6.2.4 -- 8 March 2013)
+ Partial Order Reduction

Full statespace search for:
never claim + (never_0)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 84 byte, depth reached 125, errors: 0
703 states, stored
490 states, matched
1193 transitions (= stored+matched)
968 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.075 equivalent memory usage for states (stored*(State-vector + overhead))
0.282 actual memory usage for states

128.000 memory used for hash table (-w24)
0.611 memory used for DFS stack (-m10000)

128.806 total actual memory usage
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unreached in proctype Kcustomer
(0 of 19 states)
unreached in proctype Mcustomer
(0 of 19 states)
unreached in proctype machine
(0 of 16 states)
unreached in proctype monitor
(0 of 2 states)
unreached in init
(0 of 4 states)
unreached in claim never_0
./candynever.pml:9, state 10, "(((candies_paid-candies_delivered)<0))"
./candynever.pml:11, state 13, "-end-"
(2 of 13 states)

pan: elapsed time 0.01 seconds
bash-3.2$

We used the -a flag for ./pan because it contains acceptence states (accept S4) we want to know if it is reached. It
is reached precisely when ((candies paid - candies delivered < 0)). We see that this state (never 0
state 10) in fact is unreachable, which is what we want.

Let us now consider when an error is reported. Suppose we believe that candies paid should never have a
value of 2. Here the bad thing then is candies paid being equal to 2, except that we don’t want it to be equal to 2
at any point in any execution, not just not at the start of any execution. We can capture this negative property with the
LTL formula

<>(candies_paid == 2)

If we store this is a file testltl.pml, and save its conversion to a “never” claim in testnever.pml and compile
and execute the verifier for this case via

spin -F testltl.pml > testnever.pml
spin -a -N testnever.pml candy.pml
gcc -o pan pan.c
./pan -a

we get the output

bash-3.2$ ./pan -a
warning: for p.o. reduction to be valid the never claim must be stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)
pan:1: assertion violated !((candies_paid==2)) (at depth 21)
pan: wrote candy.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never claim + (never_0)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)
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State-vector 84 byte, depth reached 21, errors: 1
8 states, stored
0 states, matched
8 transitions (= stored+matched)
7 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.001 equivalent memory usage for states (stored*(State-vector + overhead))
0.282 actual memory usage for states

128.000 memory used for hash table (-w24)
0.611 memory used for DFS stack (-m10000)

128.806 total actual memory usage

pan: elapsed time 0 seconds
bash-3.2$

Thos time you may note we are told we have an assertion failure and that there is a trail file. We may examine that
trail file as follows:

bash-3.2$ spin -t -p candy.pml
starting claim 5
spin: couldn’t find claim 5 (ignored)
using statement merging
Starting machine with pid 3

2: proc 1 (:init:) candy.pml:66 (state 1) [(run machine(4))]
Insert coin.

4: proc 2 (machine) candy.pml:47 (state 1) [printf(’Insert coin.\\n’)]
Starting Kcustomer with pid 4

6: proc 1 (:init:) candy.pml:67 (state 2) [(run Kcustomer(2))]
Starting Mcustomer with pid 5

8: proc 1 (:init:) candy.pml:68 (state 3) [(run Mcustomer(2))]
10: proc 4 (Mcustomer) candy.pml:30 (state 1) [slot!Pay]

Payment made by Mcustomer
11: proc 4 (Mcustomer) candy.pml:31 (state 2) [printf(’Payment made by Mcustomer\\n’)]
12: proc 4 (Mcustomer) candy.pml:32 (state 3) [candies_paid = (candies_paid+1)]

candies_paid == 1
13: proc 4 (Mcustomer) candy.pml:33 (state 4) [printf(’candies_paid == %d\\n’,candies_paid)]
15: proc 4 (Mcustomer) candy.pml:34 (state 6) [candy_choice!MarsBar]

Mcustomer chose a MarsBar
16: proc 4 (Mcustomer) candy.pml:35 (state 7) [printf(’Mcustomer chose a MarsBar\\n’)]
18: proc 3 (Kcustomer) candy.pml:14 (state 1) [slot!Pay]

Payment made by Kcustomer
19: proc 3 (Kcustomer) candy.pml:15 (state 2) [printf(’Payment made by Kcustomer\\n’)]
20: proc 3 (Kcustomer) candy.pml:16 (state 3) [candies_paid = (candies_paid+1)]

candies_paid == 2
21: proc 3 (Kcustomer) candy.pml:17 (state 4) [printf(’candies_paid == %d\\n’,candies_paid)]

spin: trail ends after 22 steps
#processes: 5
candies_paid = 2
candies_delivered = 0
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queue 1 (slot): [Pay][Pay]
queue 2 (candy_choice): [MarsBar]
22: proc 4 (Mcustomer) candy.pml:36 (state 12)
22: proc 3 (Kcustomer) candy.pml:18 (state 8)
22: proc 2 (machine) candy.pml:48 (state 2)
22: proc 1 (:init:) candy.pml:69 (state 4) <valid end state>
22: proc 0 (monitor) candy.pml:61 (state 1)

5 processes created
bash-3.2$

Here we see a trace where the MarsBar customer buys a candy, and then the KitKat customer buys a candy. There is
nothing fundamentaly wrong with this behavior, so we must have a misunderstanding somewhere. Maybe we meant
for the model to handle candies paid by decrementing it each time a customer picked up their candy. Or maybe
we really meant the temporal property

<> (candies_paid - candies_delivered == 2)

To resolve this, you have to make a descission what each of the variables represents, and then correct either the model
or the property as is appropriate.

Now its your turn.

5 Problem
1. (50pts) Here you are asked to build a Promela model forthe boat problem from the last assignment, except this

time you are required to have two boats. The description, adjusted to two boats is as follows:

Consider how a simple lock on a waterway works. There are two gates, an upstream gate and downstream gate,
and there are two valves (typically panels in the gates), an inlet valve on the upstream side and an outlet valve
on the downstream side. When the upstream gate and the inlet valve are both closed, no water may flow from
upstream into the lock, and when the downstream gate and outlet valve are both closed no water may flow out
of the lock. If either the upstream gate or the upstream valve is open and the water level upstream is higher than
the water level in the lock, then the water flows into the lock, increasing the level in the lock (one unit per time
interval (an abstraction)), and if either the downstream gate or the downstream valve is open and the water level
in the lock is higher than the water level downstream , then water flows out of the lock, decreasing the level in the
lock (one unit per time interval (an abstraction)). You may assume (an abstraction) that the water level upstream
and downstream are constant with upstream always strictly higher than downstream.

The initial position of the lock is with the downstream gate open, and the upstream gate and both valves closed, and
the water level equal to the downstream level. If a boat approaches from the upstream side (headed downstream),
if the upstream gate is open, then the boat goes into the lock, while if the upstream gate is closed, it waits for
it to open. If a boat is waiting on the upstream side (headed downstream) and the upstream gate is closed and
the downstream gate is open, then (eventually) the downstream gate closes, and when it is closed, the inlet valve
opens. If the inlet valve is open and the water level in the lock is the same as the upstream water level, the inlet
valve closes, and when it is closed, the upstream gate opens. When the upstream gate is open, if a boat is waiting
on the upstream side (headed downstream), it enters the lock, and if a boat headed upstream is in the lock, it
exists. (The lock may hold multiple boats at once.) Once a boat headed downstream has entered the lock, the gate
closes and when it is closed, the outlet valve opens. If the outlet valve is open and the water level is equal to the
downstream level, then the outlet valve closes, then the downstream gate opens, and then the boat exists the lock
to the downstream side. A boat that is downstream of the lock headed downstream may either continue to head
downstream or turn and head upstream approaching the lock from the downstream side.

When a boat approaches from the downstream side (headed upstream), if the downstream gate is open, the boat
goes into the lock and if the downstream gate is closed, it waits for it to open. If a boat is waiting on the downstream
side (headed upstream) and the downstream gate is closed and the upstream gate is open, then the upstream gate
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closes, and when it is closed the outlet valve opens. If the outlet valve is open and the water level in the lock is
the same as the downstream water level, the outlet valve closes, and when it is closed, the downstream gate opens.
When the downstream gate is open, if a boat is waiting on the downstream side (headed upstream), it enters the
lock. Once a boat headed upstream has entered the lock, the gates close and when it is closed, the inlet valve
opens. If the inlet valve is open and the water level is equal to the upstream level, then the inlet valve closes and
the upstream gate opens. If there is a boat headed upstream in the lock and the upstream gate is open, then the boat
exists the lock to the upstream side. A boat that is upstream of the lock headed upstream may either continue to
head upstream or turn and head downstream approaching the lock.

Write a Promela model for the above scenario, with two boats in addition to the lock and the water. You should have
your model print out each event that occurs (such as the gate opening or a boat entering the lock). Use atomic
to bind print statements to the statements that do the event. Your model should satisfy that LTL properties given in
the next problem. Save your code in the file mp2.pml

2. (25 pts) Using the variables and types you introduced in the previous problem, give LTL formulae suitable for
producing “never” claims checking the following conditions hold:

1. (5pts) We never have both gates open at the same time. Put the formula in the file ltl1.pml.

2. (5pts) Neither valve is ever open when either gate is open. Put the formula in the file ltl2.pml.

3. (8pts) The boat only enters the lock when the water level in the lock is the same as the water level on the side
where the boat is. Put the formula in the file ltl3.pml.

4. (7pts) A boat headed in a given direction will get to that side of the lock. Put the formula in the file
ltl4.pml.

Your points for these problems will be determined both by whether the formula expresses the given property and
by whether your model satisfies the resulting “never” claim.

3. (Extra Credit) Using the variables and types you introduced in the previous problem, give an LTL formula suitable
for producing a “never” claim checking the following condition hold:

1. (4pts) There are never two boats in the lock at the same time headed in opposite directions with both the gates
closed. Put the formula in the file ltlX.pml.
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