
HW 5 – Evaluation Semantics
CS 477 – Spring 2014

Revision 1.0

Assigned April 2, 2014
Due April 9, 2014, 9:00 pm
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this HW is to test your understanding of

• Natural semantics evaluation, transition semantics evaluation, and program transition systems

Another purpose of HWs is to provide you with experience answering non-programming written questions of the
kind you may experience on the final.

3 Turn-In Procedure
The pdf for this assignment (hw5.pdf) should be found in the assignments/hw5/ subdirectory of your svn
directory for this course. Your solution should be put in that same directory. Using your favorite tool(s), you should
put your solution in a file named hw5-submission.pdf. If you have problems generating a pdf, please seek
help from the course staff. Your answers to the following questions are to be submitted electronically from within
assignments/hw5/ subdirectory by committing the file as follows:

svn add hw5-submission.pdf
svn commit -m "Turning in hw5"

4 Problems
Each of the probelms will use the same program P give here:

i := 1;
while i != 2
do
i := i + 1
od

1. (10 pts) Starting in the empty envirnoment, evaluate the program P using Natural Semantics, as described in class.

1



Solution:

Num
(1, { }) ⇓ 1

Asgn
(i := 1, { }) ⇓ {i 7→ 1}

Var
(i, {i 7→ 1}) ⇓ 1

Num
(2, {i 7→ 1}) ⇓ 2 (1 = 2) = false

Rel
(i = 2, {i 7→ 1}) ⇓ false

Not-F
(i != 2, {i 7→ 1}) ⇓ true Asgn2 While2

While-T
(while i != 2 do i := i+1 od, {i 7→ 1}) ⇓ {i 7→ 2}

Seq
(i := 1; while i != 2 do i := i+1 od, { }) ⇓ {i 7→ 2}

where Asgn2 =

Var
(i, {i 7→ 1}) ⇓ 1

Num
(1, {i 7→ 1}) ⇓ 1 (1 + 1) = 2

Arith
(i+1, {i 7→ 1}) ⇓ 2

Asgn
(i := i+1, {i 7→ 1}) ⇓ {i 7→ 2}

and While2 =
Var

(i, {i 7→ 2}) ⇓ 2
Num

(2, {i 7→ 2}) ⇓ 2 (2 = 2) = true
Rel

(i = 2, {i 7→ 2}) ⇓ true
Not-T

(i != 2, {i 7→ 2}) ⇓ false
While-F

(while i != 2 do i := i+1 od, {i 7→ 2}) ⇓ {i 7→ 2}

2. (15 pts) Starting in the empty envirnoment, evaluate the program P using transition semantics, as described in
class. You should use transition semantics for evaluating arithmetic and boolean expressions, as well.

Solution:

Assign2
(i := 1, {}) −→ {i 7→ 1}

Seq
(i := 1; while i != 2 do i := i+1 od, {}) −→ (while i != 2 do i := i+1 od, {i 7→ 1})

While
(while i != 2 do i := i+1 od, {i 7→ 1}) −→

(if i != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1})

Var
(i, {i 7→ 1}) −→ (1, {i 7→ 1})

Rel1
(i = 2, {i 7→ 1}) −→ (1 = 2, {i 7→ 1})

Not1
(i != 2, {i 7→ 1}) −→ (1 != 2, {i 7→ 1})

if1
(if i != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1}) −→
(if 1 != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1})

Rel3
(1 = 2, {i 7→ 1}) −→ (false, {i 7→ 1})

Not1
(1 != 2, {i 7→ 1}) −→ (!(false), {i 7→ 1})

(if 1 != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1}) −→
(if !(false) then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1})

if1

2



It would have been acceptable to treat != as a single operation.

Not3
(!(false), {i 7→ 1}) −→ (true, {i 7→ 1})

if1
(if !(false) then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1}) −→

(if true then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1})

if-true
(if true then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 1}) −→

(i := i+1; while i != 2 do i := i+1 od, {i 7→ 1})

Var
(i, {i 7→ 1}) −→ (1, {i 7→ 1})

Arith1
(i+1, {i 7→ 1}) −→ (1+1, {i 7→ 1})

Assign1
(i := i+1, {i 7→ 1}) −→ (i := 1+1, {i 7→ 1})

Seq1
(i := i+1; while i != 2 do i := i+1 od, {i 7→ 1}) −→
(i := 1+1; while i != 2 do i := i+1 od, {i 7→ 1})

Arith3
(1+1, {i 7→ 1}) −→ (2, {i 7→ 1})

Assign1
(i := 1+1, {i 7→ 1}) −→ (i := 2, {i 7→ 1})

Seq1
(i := 1+1; while i != 2 do i := i+1 od, {i 7→ 1}) −→

(i := 2; while i != 2 do i := i+1 od, {i 7→ 1})

Assign2
(i := 2, {i 7→ 1}) −→ {i 7→ 2}

Seq2
(i := 2; while i != 2 do i := i+1 od, {i 7→ 1}) −→

(while i != 2 do i := i+1 od, {i 7→ 2})

While
(while i != 2 do i := i+1 od, {i 7→ 2}) −→

(if i != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2})

Var
(i, {i 7→ 2}) −→ (1, {i 7→ 2})

Rel1
(i = 2, {i 7→ 2}) −→ (2 = 2, {i 7→ 2})

Not1
(i != 2, {i 7→ 2}) −→ (2 != 2, {i 7→ 2})

if1
(if i != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2}) −→
(if 2 != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2})

Rel3
(2 = 2, {i 7→ 2}) −→ (true, {i 7→ 2})

Not1
(2 != 2, {i 7→ 2}) −→ (!(true), {i 7→ 2})

(if 2 != 2 then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2}) −→
(if !(true) then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2})

if1

3



Again, it would have been fine to treat != as a single operation.

Not2
(!(true), {i 7→ 2}) −→ (false, {i 7→ 2})

if1
(if !(true) then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2}) −→

(if false then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2})

if-false
(if false then i := i+1; while i != 2 do i := i+1 od else skip, {i 7→ 2}) −→

(skip, {i 7→ 2})

Skip
(skip, {i 7→ 2}) −→ {i 7→ 2}

5 Extra Credit
3. (5 pts) Translate P into a program transition system. You will need to introduce at least one additional variable.

If the value 2 were changed to another value in both P your program, the resulting programs should continue to
behave the same as each other in terms of values assigned to i.

Solution: Let

• V = {pc,i},
• F = {+, 1, 2}, af = {+ 7→ 2; 1 7→ 0; 2 7→ 0} (we will use + infixed),

• R = { = }, rf = {=7→ 2} (we will use it infixed),

• G = (V, F, af,R, ar),

• D = N,

• F contains the addtion function, and the Natural numbers 1 and 2

• φ(+) = +R is the singleton set containing equality on N,

• ρ(=) = =, ρ(1) = 1, ρ(2) = 2

• S = (G,D,F , φ,R, ρ).
• init = (pc = 1)

Such a program transition system may be given by (S, T, true) where

T =


pc = 1 → (pc,i) := (2,1)

pc = 2 & i != 2 → pc ::= 3
pc = 2 & i = 2 → pc ::= 4

pc = 3 → (pc,i) := (2,i + 1)



4


