
HW 4 – Floyd-Hoare Logic
CS 477 – Spring 2014

Revision 1.1

Assigned March 6, 2014
Due March 13, 2014, 11:59 pm
Extension 48 hours (20% penalty)

1 Change Log
1.1 Corrected typos and the line overrun in the code in Problem 5.

1.0 Initial Release.

2 Objectives and Background
The purpose of this HW is to test your understanding of

• proving correctness of a program using Floyd-Hoare Logic

Another purpose of HWs is to provide you with experience answering non-programming written questions of the
kind you may experience on the midterm and final.

3 Turn-In Procedure
The pdf for this assignment (hw4.pdf) should be found in the assignments/hw4/ subdirectory of your svn
directory for this course. Your solutions to the problems should be put in that same directory. Using your favorite
tool(s), you should put your solution to the handwritten problems in a file named hw4-submission.pdf, and the
solution to he Isabelle problem should go in a file named hw4.thy. A stub file for hw4.thy has already been put
in your directory as well. If you have problems generating a pdf, please seek help from the course staff. Your answers
to the following questions are to be submitted electronically from within assignments/hw4/ subdirectory by
committing the file as follows:

svn add hw4-submission.pdf
svn commit -m "Turning in hw4"

This will commit both your solution to the handwritten problems and the solution to Isabelle problem (because hw4.thy
already exists in your directory).

4 Handwritten Problems
Give a proof in Floyd-Hoare Logic of each of the following Hoare triples. You should state clearly which rule you are
using at each step.

1. (10pts) {x > 1 ∧ y > 0} if y > 1 then z := x ∗ y else z := x/y fi {z ≥ x ∧ z > y}
In this problem, the variables range over real numbers.

1

Solution:
Let ThenTree =

(1)(x > 1 ∧ y > 0 ∧ y > 1)⇒ ((x ∗ y) ≥ x ∧ (x ∗ y) > y)
AsignAx

{(x ∗ y) ≥ x ∧ (x ∗ y) > y} z := x ∗ y {z ≥ x ∧ z > y}
PrecondStr

{x > 1 ∧ y > 0 ∧ y > 1} z := x ∗ y {z ≥ x ∧ z > y}

where (1) holds because (x > 1∧ y > 0)⇒ (x ∗ y) > y and (x > 1∧ y > 1)⇒ (x > 0∧ y > 1)⇒ (x ∗ y) ≥ x

Let ElseTree =

(2)(x > 1 ∧ y > 0 ∧ ¬(y > 1))⇒ ((x/y) ≥ x ∧ (x/y) > y)
AsignAx

{(x/y) ≥ x ∧ (x/y) > y} z := x ∗ y {z ≥ x ∧ z > y}
PrecondStr

{x > 1 ∧ y > 0 ∧ ¬(y > 1)} z := x/y {z ≥ x ∧ z > y}

where (2) holds because ¬(y > 1) ⇒ y ≤ 1, and x > 1 ⇒ x > 0 and (x > 0 ∧ y > 0 ∧ y ≤ 1) ⇒ (x/y) ≥ x,
and (x/y) ≥ x ∧ x > 1 ⇒ (x/y) > 1 and ((x/y) > 1 ∧ y ≤ 1) ⇒ (x/y) > y, and thus
(x > 1 ∧ y > 0 ∧ ¬(y > 1))⇒ ((x/y) ≥ x ∧ (x/y) > y).

Then

ThenTree ElseTree
IfThenElseRule

{x > 1 ∧ y > 0} if y > 1 then z := x ∗ y else z := x/y fi {z ≥ x ∧ z > y}

2. (15 pts) {n > 0} i := n; j := 0; while i ≥ 0 do (j := j + i; i := i− 1) od {j = (n× (n+ 1))/2}
In this problem, the variables range over the integers.

Solution:
Let Setup =

(1)
n > 0⇒
(2× 0 =

(n× (n+ 1))
−(n× (n+ 1)))
∧ (n ≥ −1)

AssignAx
{(2× 0 = (n× (n+ 1))
−(n× (n+ 1)))
∧ (n ≥ −1)}
i := n

{(2× 0 = (n× (n+ 1))
−(i× (i+ 1)))
∧ (i ≥ −1)}

PrecondStr
{n > 0}
i := n

{(2× 0 = (n× (n+ 1))− (i× (i+ 1)))
∧ (i ≥ −1)}

AssignAx
{(2× 0 = (n× (n+ 1))− (i× (i+ 1)))

∧ (i ≥ −1)}
j := 0

{(2× j = (n× (n+ 1))− (i× (i+ 1)))
∧ (i ≥ −1)}

SeqRule
{n > 0} i := n; j := 0 {(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1)}

where (1) is true because 2×0 = 0 and (n×(n+1))−(n×(n+1))) = 0 so 2×0 = (n×(n+1))−(n×(n+1))),
and n > 0⇒ n ≥ −1.

2

Let WhileLoop =

(2)
(2× j =

(n× (n+ 1))
−(i× (i+ 1)))
∧ (i ≥ −1)
∧ (i ≥ 0)
⇒

(2× (j + i) =
(n× (n+ 1))

−((i− 1)× ((i− 1) + 1)))
∧ ((i− 1) ≥ −1)

AssignAx
{(2× (j + i) =
(n× (n+ 1))

−((i− 1)× ((i− 1) + 1)))
∧ ((i− 1) ≥ −1)}

j := j + i
{(2× j =

(n× (n+ 1))
−((i− 1)× ((i− 1) + 1)))
∧ ((i− 1) ≥ −1)}

PrecondStr
{(2× j =

(n× (n+ 1))
−(i× (i+ 1)))
∧ (i ≥ −1)
∧ (i ≥ 0)}
j := j + i
{(2× j =

(n× (n+ 1))
−((i− 1)× ((i− 1) + 1)))
∧ ((i− 1) ≥ −1)}

AssignAx
{(2× j =

(n× (n+ 1))
−((i− 1)× ((i− 1) + 1)))
∧ ((i− 1) ≥ −1)}

i := i− 1
{(2× j =

(n× (n+ 1))
−(i× (i+ 1)))
∧ (i ≥ −1)}

SeqRule
{(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1) ∧ (i ≥ 0)}

j := j + i; i := i− 1
{(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1)}

WhileRule
{(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1)}

while i ≥ 0 do (j := j + i; i := i− 1) od
{(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1) ∧ ¬(i > 0)}

where (2) is true because (n×(n+1))−(i×(i+1))) = n2+n−i2−i and (n×(n+1))−((i−1)×((i−1)+1))) =
n2 + n− i2 + i = (n2 + n− i2 − i) + (2× i) and since 2× j = (n× (n+ 1))
− (i× (i+ 1))) we have

2× (j + i) = (2× j) + (2× i)
= (n2 + n− i2 − i) + (2× i)
= (n× (n+ 1))− ((i− 1)× ((i− 1) + 1)))

For the second conjunct,

Then

Setup WhileLoop
SeqRule

{n > 0}
i := n; j := 0; while i ≥ 0 do (j := j + i; i := i− 1) od

{(2× j = (n× (n+ 1))− (i× (i+ 1))) ∧ (i ≥ −1) ∧ ¬(i > 0)} SideCond1
PostcondWk

{n > 0} i := n; j := 0; while i ≥ 0 do (j := j + i; i := i− 1) od {j = (n× (n+ 1))/2}

where SideCond1 = ((2× j = (n× (n+1))− (i× (i+1)))∧ (i ≥ −1)∧¬(i > 0))⇒ (j = (n× (n+1))/2),

3

and SideCond1 is true because ((i ≥ −1) ∧ ¬(i > 0)) ⇒ i = −1 and (i = −1) ⇒ (i + 1) = 0 and
((i+ 1) = 0)⇒ (i× (i+ 1) = 0) and (i× (i+ 1) = 0)⇒ ((n× (n+ 1))− (i× (i+ 1)) = (n× (n+ 1))) and
thus (2 × j = (n × (n + 1)) − (i × (i + 1))) ⇒ (2 × j = (n × (n + 1))) and since one of n or n + 1 must be
even, (2× j = (n× (n+ 1)))⇒ (j = (n× (n+ 1))/2).

5 Extra Credit
3. (5 pts) {a > 0 ∧ b > 0}

m := a;
n := b;
while n 6= m do(if m < n then n := n−m else m := m− n fi) od
{a mod m = 0 ∧ b mod m = 0}

In this problem, the variables range over the integers.

Solution:
Let IfThenElseProof =

(1)
(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

⇒
(∀d.(mmod d = 0∧
(n−m)mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

AssignAx
{(∀d.(mmod d = 0∧
(n−m)mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

n := n−m
{(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

PrecondStr
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))
∧ (n 6= m) ∧ (m < n)}
n := n−m
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))}

(2)
(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

⇒
(∀d.
((m− n)mod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

AssignAx
{(∀d.
((m− n)mod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

m := m− n
{(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

PrecondStr
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))
∧ (n 6= m) ∧ ¬(m < n)}
m := m− n
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))}

IfThenElseRule
{(∀d.(mmod d = 0 ∧ n mod d = 0)⇔ (a mod d = 0 ∧ b mod d = 0))
∧ (n 6= m)}
if m < nthen n := n−m
else m := m− n fi) od
{(∀d.(mmod d = 0 ∧ n mod d = 0)⇔ (a mod d = 0 ∧ b mod d = 0))}

where (1) and (2) are true because (m mod d = 0 ∧ n mod d = 0) holds if and only if
(m mod d = 0 ∧ (n − m) mod d = 0) holds if and only if ((m − n) mod d = 0 ∧ n mod d = 0).

4

Then

(3)
(a > 0 ∧ b > 0)⇒
(∀d.(a mod d = 0
∧ b mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

AssignAx
{(∀d.(a mod d = 0
∧ b mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

m := a;
{(∀d.(mmod d = 0
∧ b mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

PrecondStr
{a > 0 ∧ b > 0}
m := a;
{(∀d.(mmod d = 0 ∧ b mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))}

AssignAx
{(∀d.(mmod d = 0
∧ b mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

n := b;
{(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

SeqRule
{a > 0 ∧ b > 0}
m := a; n := b;
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))}

IfThenElseProof
WhileRule

{(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))}

while n 6= m do
(if m < n
then n := n−m
else m := m− n fi) od
{(∀d.(mmod d = 0
∧ n mod d = 0)
⇔ (a mod d = 0
∧ b mod d = 0))

∧ ¬(n 6= m)}
SeqRule

{a > 0 ∧ b > 0}
m := a; n := b;
while n 6= m do
(if m < n then n := n−m
else m := m− n fi) od
{(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))
∧ ¬(n 6= m)}

(4)
(∀d.(mmod d = 0 ∧ n mod d = 0)
⇔ (a mod d = 0 ∧ b mod d = 0))
∧ ¬(n 6= m)⇒
(a mod m = 0 ∧ b mod m = 0)

PostcondWk
{a > 0 ∧ b > 0}
m := a; n := b; while n 6= m do (if m < n then n := n−m else m := m− n fi) od
{a mod m = 0 ∧ b mod m = 0}

Condition (3) holds trivially. For condition (4), first ¬(n 6= m) ⇒ (n = m). Thus, if we specialize the antecednet
to m, it reduces to (m mod m = 0 ∧ m mod m = 0) ⇔ (a mod m = 0 ∧ b mod m = 0). But we always have
mmod m = 0. Therefore, we have (a mod m = 0 ∧ b mod m = 0).

6 Hoare Logic Proofs in Isabelle/HOL
In the directory assignments/hw4 where the pdf for this file is located, there is a file Hoare SIMP.thy where
there is Hoare Logic for a simple imperative programming language. The theory file Hoare SIMP.thy contains
definitions for embedding predicate logic as suited to Hoare Logic into Isabelle/HOL. The type ’data allows us to
give what we want as our basic form of values for our programming language, in this instance int. Our expressions
are represented as functions from states to data. We encapsulated this with the type abbreviation:

type_synonym exp = "state ⇒ data"

Similarly, boolean expressions are represented as functions from states to bool, and encapsulated with the type
abbreviation:

type_synonym bool_exp = "state ⇒ bool"

5

Variables are represented by strings (which in turn are encoded as lists of characters) using the abbreviation
var name. We can use $::var name ⇒ exp to convert variables into expressions. We can use k::int⇒ exp
to convert integers and reals into expressions. Likewise, we can use Bool::bool⇒ bool exp to convert booleans
into boolean expressions. The first order predicates and logical connectives have been “lifted” to take arguments taking
a state as an argument, and returning results also parametrized by states. An example of this is:

definition plus_e :: "exp ⇒ exp ⇒ exp" (infixl "[+]" 150) where
"(p [+] q) ≡ (λ s. p s + q s)"

The theorems stating the definitions (those introduced by the keyword definition are named by adding def
to the basic name of the defined constant. For example, the above definition may be accessed through the name
plus e def.

Using this essentially shallow embedding of predicate logic in Isabelle/HOL, we can define substitution of expres-
sions for variables in any construct encoded as a mapping from state by:

definition substitute :: "(state ⇒ ’a) ⇒ var_name ⇒ exp ⇒ (state ⇒ ’a)"
("_/[_/⇐_/]" [120,120,120]60)

where "p[x⇐ e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

The programming language itself is encoded using a data type for its abstract syntax trees, and augmenting the
constructs with mixfix notation so that terms can be typed in and pretty-printed back roughly in the expected concrete
syntax. The data type is as follows:

datatype command =
AssignCom "var_name" "exp" (infix "::=" 110)

| SeqCom "command" "command" (infixl ";" 109)
| CondCom "bool_exp" "command" "command"

("IF _/ THEN _/ ELSE _/ FI" [120,120,120]60)
| WhileCom "bool_exp" "command" ("WHILE _/ DO _/ OD" [120,120]60)

As an example use of all this, if we wanted to express

if x > 0 then y := 2 + x else y := 2 - x

we could enter into Isabelle/HOL

term "IF $’’x’’ [>] k 0 THEN ’’y’’ ::= k 2 [+] $’’x’’
ELSE ’’y’’ ::= k 2 [-] $’’x’’ FI"

The rules for the logic are given by the following rules (for the inductive relation hvalid):

AssignmentAxiom: {{P [x⇐ e])}} x ::= e {{P}}
SequenceRule: [[{{P}} C {{Q}} ; {{Q}} C ′ {{R}}]]

=⇒ {{P}} C ; C ′ {{R}}
RuleOfConsequence: [[||= (P [−→]P ′) ; {{P ′}} C {{Q′}} ; ||= (Q′[−→]QP]] =⇒

{{P}} C {{Q}}
IfThenElseRule: [[{{P [∧]B}} C {{Q}} ; {{P [∧] [¬]B}} C ′ {{Q}}]] =⇒

{{P}} IF B THEN C ELSE C ′ FI {{Q}}
WhileRule: [[{{P [∧]B}} C {{P}}]] =⇒

{{P}} WHILE B DO C OD {{P [∧] [¬]B}}

From the RuleOfConsequence there are two derived rules:

PreconditionStrengthening: [[||= (P [−→]P ′) ; {{P ′}} C {{Q}}]] =⇒
{{P}} C {{Q}}

PostconditionWeakening: [[||= (Q′[−→]Q) ; {{P}} C {{Q′}}]] =⇒
{{P}} C {{Q}}

6

In addtion to using rule, rule tac, erule, and erule tac, particularly with the above rules, you will want
to use simp add: def1 . . . defn and clarsimp simp add: def1 . . . defn to expand out the definitions and
apply previously proven simplifications. If you wish to give a intermediate result that you feel will help, for example
from the given hypotheses, you wish to both use and show a result, you may use subgoal tac result. You may
also want to use the built-in tool Sledgehammer to have Isabelle suggest possible proofs to you (using metis).

7 Isabelle Problem
4. (20pts) Prove in Isabelle/HOL

{{$′′n′′ [>] k 0}}
′′i′′ ::= $′′n′′ ; ′′j′′ ::= k 0 ;
WHILE $′′i′′ [>] k 0 DO ′′j′′ ::= $′′j′′ [+] $′′i′′ ; ′′i′′ ::= $′′i′′ [−] k 1 OD
{{k 2 [×] $′′j′′ [=] $′′n′′ [×] $′′n′′ [+] k 1}}

5. (Extra Credit 5 pts) Prove in Isabelle/HOL

{{$′′a′′ [>] k0 [∧] $′′b′′ [>] k0}}
′′m′′ ::= $′′a′′ ; ′′n′′ ::= $′′b′′ ;
(WHILE ([¬]($′′n′′ [=] $′′m′′))
DO IF $′′m′′ [<] $′′n′′ THEN ′′n′′ ::= $′′n′′ [−] $′′m′′
ELSE ′′m′′ ::= $′′m′′ [−] $′′n′′ FI

OD)
{{$′′a′′ [mod] $′′m′′ [=] k0 [∧] $′′b′′ [mod] $′′m′′ [=] k0}}”

7

