CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

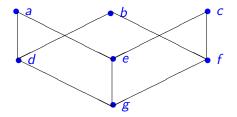
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

May 7, 2014

Partial Orders

A partial order on a set S is a binary relation \leq on S such that

- [Refl] $s \leq s$ for all $s \in S$
- [Antisym] $s \le t$ and $t \le s$ impilies s = t, for all $s, t \in S$
- **[Trans]** $s \le t$ and $t \le u$ impilies $s \le u$, for all $s, t, \in S$

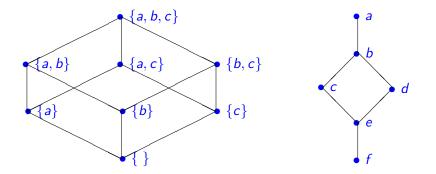


Upper Bounds and Complete Latices

- In a partial order (S, ≤), given X ⊆ S, y is an upper bound for X if for all x ∈ X we have x ≤ y.
- y is a least upper bound of X, y is an upper bound of X and whenever z is an upper bound of X, $y \le z$.
- Note: Least upper bounds are unique.
- A complete lattice is a partial order (L, ≤) such that for all X ⊆ S there exists a (unique) least upper bound.
- Write lub(X) or $\bigvee X$ for the least upper bound of X.
- Write $x \lor y$ for $\bigvee \{x, y\}$
- Note: $x \lor y = x \iff y \le x$
- Note: Given a set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice.
- Write $\bot = \bigvee \{ \}$ and $\top = \bigvee S$

▲圖▶ ▲屋▶ ▲屋▶

Example Complete Lattices



æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial Orders, Functions, and Complete Lattices

- Let X be an arbitrary set and A and B be partial orders.
- A function $f : A \to B$ is order-preserving if, for all $x, y \in A$ with $x \le y$ we have $f(x) \le f(y)$
- Function $f, g: X \rightarrow A$ may be ordered by pointwise comparison:
 - Write f ≤_{fun} g to mean that for all x ∈ X we have f(x) ≤ g(x)
 Will leave off the subcript in general
- Fact: $({f | f : X \rightarrow B}, \leq_{fun})$ is a partial order.
- Fact: $({f | f : X \to B}, \leq_{fun})$ is a complete lattice if B is.
- Fact: ({f | f : A → B, f order-preserving} ≤_{fun}) is a complete lattice if B is.

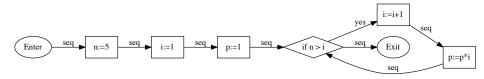
▲圖▶ ▲ 国▶ ▲ 国▶ …

A Control-Flow Graph (for a SIMPL-like language) is a tuple (N, I, K, E) where

- *N* is a finite set of nodes
- $I: N \rightarrow \{\text{Entry}, \text{Exit}, i:=e, if b, \}$
- *K* = {yes, seq}
- $E \subseteq N \times K \times N$ such that
 - for all $m, n, n' \in N$ and $k \in K$, if $(m, k, n) \in E$ and $(m, k, n') \in E$ then n = n'
 - if $m \in N$ and $l(m) = \text{Exit then } |\{n \mid \exists k \in K. (m, k, n) \in E\}| = 0$
 - if m ∈ N and l(m) = Entry or l(m) = i := e for some identifier i and expression e, and (m, k, n) ∈ E then k = seq
 - if $m \in N$ and l(m) = if b for some boolean expression b, then $|\{n \mid \exists k \in K. (m, k, n) \in E\}| = 2$

★聞▶ ★ 国▶ ★ 国▶

n:=5; i:=1; p:=1; while n>i do i:=i+1; p:=p*i od



3

イロト イヨト イヨト イヨト

- Let (N, I, K, E) be a control flow graph.
- An abstract interpretation of control flow graphs is a pair (A, \mathcal{I}) where
 - A is a complete latice and
 - $\mathcal{I}: ((E \to A) \times E) \to A$ (think next state information vector)
 - for all $f,g \in (E \to A)$, for all $e \in E$, if $f \leq g$ then $\mathcal{I}(f,e) \leq \mathcal{I}(g,e)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Can define $\overline{\mathcal{I}}: (E \to A) \to (E \to A)$ by $\overline{\mathcal{I}}(f)(e) = \mathcal{I}(f, e)$
- Fact: $\overline{\mathcal{I}}$ is order-preserving
- Tarski's Fixed-Point Theorem: If A is a complete lattice and
 f : A → A is order-preserving, then *f* has both a least and a greatest
 fixed-point (may or may not be the same).
- Fact: There exist $c : E \to A$ such that $\overline{\mathcal{I}}(c) = c$, and that c is the least such.
- Write $\mu \overline{\mathcal{I}}$ for the least fixed point of $\overline{\mathcal{I}}$
- $\mu \overline{\mathcal{I}}$ is the abstract semantics of (N, I, K, E) with respect to (A, \mathcal{I}) .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Domain for Standard Interpretation

- Given (*N*, *I*, *K*, *E*) a control flow graph with labels using variables from *Var*
- Let Val = values ∪ {⊤, ⊥}, the extended set of values, ordered as before
 - Val is a complete lattice.
- Let $Env = \{\rho \mid \rho : Var \rightarrow Val\}$
 - Env is a complete lattice
 - ullet An env used to be a partial function; now map undefined to \bot
 - val : $(Exp \times Env) \rightarrow Val$
 - Will assume $\{true, false\} \subseteq values$
 - *bval* : $(BExp \times Env) \rightarrow \{true, false\} \cup \{\top, \bot\} \subseteq Val$
- Let $States = (E \cup \{\top, \bot\}) \times Env$
 - States is a complete lattice assuming the order $((e, \rho) \le (e', \rho')) \equiv ((e \le e') \land (\rho \le \rho')).$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Transitions in Control Flow Graphs

- next_state : $States \rightarrow States$
- next_state(\top, ρ) = (\top, ρ); next_state(\bot, ρ) = (\bot, ρ)
- next_state($(m, k, n), \rho$) defined by cases on l(n):
 - $l(n) \neq \text{Enter}$
 - $l(n) = \text{Exit} \Rightarrow \text{next_state}((m, k, n), \rho) = ((m, k, n), \rho)$ • l(n) = (i := e), then *n* has unique successor node *p*,
 - l(n) = (i := e), then *n* has unique successor node *p*, $(n, \operatorname{suc}, p) \in E$.

• next_state($(m, k, n), \rho$) = ($(n, \operatorname{suc}, p), \rho[i \mapsto val(e, \rho)]$)

- l(n) = (if b), then n has two out arcs: (n, yes, p) and (n, seq, q)
 - if $bval(b, \rho) = \bot$ then next_state $((m, k, n), \rho) = (\bot, \rho)$
 - if $bval(b, \rho) = \top$ then next_state $((m, k, n), \rho) = (\top, \rho)$
 - $bval(b, \rho) = true then$
 - $\mathsf{next_state}((m, k, n), \rho) = ((n, \mathsf{yes}, p), \rho)$
 - $bval(b, \rho) = false then$ next_state($(m, k, n), \rho$) = ($(n, suc, q), \rho$)
- next_state is transition semantics for control flow graphs
 Image: Control flow graphs

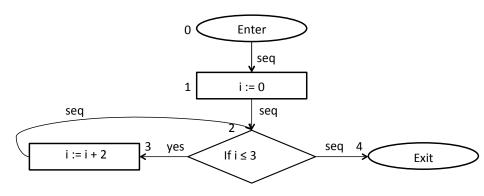
Consider the following control flow graph (N, I, K, E) where:

•
$$Var = \{i\}, values = \mathbb{Z}$$

• $N = \{0, 1, 2, 3, 4, 5, 6\}$
• $l(0) = Enter, l(1) = i:=0, l(2) = if 1 \le 3, l(3) = i:=i+2, l(4) = Exit$
• $K = \{yes, seq\}$
• $E = \begin{cases} (0, seq, 1), (1, seq, 2), \\ (2, yes, 3), (2, seq, 4), \\ (3, seq, 2) \end{cases}$

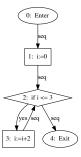
王

・ロト ・聞ト ・ヨト ・ヨト



Example: next_state

- $\operatorname{next_state}((0, \operatorname{seq}, 1), \{i \mapsto \bot\}) = ((1, \operatorname{seq}, 2), \{i \mapsto 0\})$
- $next_state((1, seq, 2), \{i \mapsto 0\}) = ((2, yes, 3), \{i \mapsto 0\})$
- next_state((2, yes, 3), $\{i \mapsto 0\}$) = ((3, seq, 2), $\{i \mapsto 0\}$ [$i \mapsto 0+2$]) = ((3, seq, 2), $\{i \mapsto 2\}$)
- Since $\{i \mapsto 2\}(i) = 2 \le 3$ next_state((3, seq, 2), $\{i \mapsto 2\}$) = ((2, yes, 3), $\{i \mapsto 2\}$)
- next_state((2, yes, 3), $\{i \mapsto 2\}$) = ((3, seq, 2), $\{i \mapsto 2\}$ [$i \mapsto 2+2$]) = ((3, seq, 2), $\{i \mapsto 4\}$)
- Since $\{i \mapsto 4\}(i) = 4 \leq 3$ next_state((3, seq, 2), $\{i \mapsto 4\}$) = ((2, seq, 4), $\{i \mapsto 4\}$)



< 同 ト く ヨ ト く ヨ ト

Standard Interpretation and Semantics

- Let Interp(θ, (m, k, n)) be the lifting of next_state to sets of environments (contexts)
 - Note: $l(m) \neq Exit$
 - $l(m) = \text{Enter} \Rightarrow Interp(\theta, (m, k, n)) = \{\{v \mapsto \bot | v \in Var\}\} = \{\lambda v. \bot\}$
 - $l(m) \neq \text{Enter} \Rightarrow$ $lnterp(\theta, (m, k, n)) =$ $\{\rho \mid \exists m', k', \rho' \mid (m', k', m) \in E \land$ $\rho' \in \theta((m', k', m)) \land$ $next_state((m', k', m), \rho') = ((m, k, n), \rho)\}$
- If θ tells all the environments we might come into our edge with, $Interp(\theta, (m, k, n))$ tells us the set of environemts we may leave with

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Let $Contexts = \mathcal{P}(Env)$
 - Contexts is a complete lattice
 - A context corresponds to a formula in prediacte logic over the program variables
- If for all e ∈ E we have θ(e) ⊆ φ(e), then for all e' ∈ E we have *Interp*(θ, e') ⊆ *Interp*(φ, e')
- Result: (Contexts, Interp) is an abtract interpretation
- Recall: Interp : $((E \rightarrow Contexts) \times E) \rightarrow Contexts$ so $\overline{Interp} : (E \rightarrow Contexts) \rightarrow (E \rightarrow Contexts)$
- μ Interp tells us the best knowledge we can know statically about our program

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

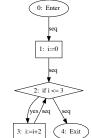
Example: Interp

Let θ map edges to sets of environments. *Interp* will tell us the set of environments next_state will associate with each edge assuming θ gives a set of (possibly) possible environments for each predecessor edge:

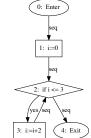
- Since $Var = \{i\}$, $Interp(\theta, (0, seq, 1)) = \{\{i \mapsto \bot\}\}$
- If $\theta(e) = \{\}$ then $Interp(\theta, e) = \{\}$, so assume $\theta(e) \neq \{\}$
- $Interp(\theta, (1, seq, 2))$ = { $\rho \mid \exists \rho' \in \theta((0, seq, 1)) \mid \rho = \rho'[i \mapsto 0]$ } = {{ $i \mapsto 0$ }}
- $Interp(\theta, (2, yes, 3)) = \{ \rho \in \theta(1, seq, 2) \cup \theta(3, seq, 2) \mid \rho(i) \leq 3 \}$
- $Interp(\theta, (3, seq, 2)) = \{ \rho \mid \exists \rho' \in \theta(2, yes, 3) \mid \rho = \rho'[i \mapsto \rho'(i) + 2] \}$
- $Interp(\theta, (2, no, 4)) = \{ \rho \in \theta(3, seq, 2) \mid \rho(i) > 3 \}$
- $\overline{Interp}(\theta)(e) = Interp(\theta, e)$
- $\overline{Interp}^{0}(\theta)(e) = \{ \} \quad \overline{Interp}^{n+1}(\theta)(e) = \overline{Interp}(\overline{Interp}^{n}(\theta))(e)$

イロト イ理ト イヨト イヨト 二度

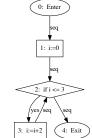
- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Inter} p(0, seq, 1) = \{$
- $\mu \overline{Inter} p(1, seq, 2) = \{$
- $\mu \overline{Inter} p(2, yes, 3) = \{$
- $\mu \overline{Inter} p(3, seq, 2) = \{$
- $\mu \overline{Interp}((2, no, 4)) = \{$



- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, \operatorname{seq}, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Inter} p(1, seq, 2) = \{ \}$
- $\mu \overline{Inter} p(2, yes, 3) = \{$
- $\mu \overline{Inter} p(3, seq, 2) = \{$
- $\mu \overline{Interp}((2, no, 4)) = \{$

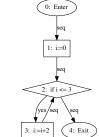


- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Inter} p(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, \operatorname{seq}, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Inter} p(2, yes, 3) = \{$
- $\mu \overline{Inter} p(3, seq, 2) = \{$
- $\mu \overline{Interp}((2, no, 4)) = \{$

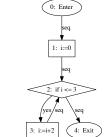


・ 同 ト ・ ヨ ト ・ ヨ ト

- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Interp}(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, seq, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Inter} p(2, \text{yes}, 3) = \{\{i \mapsto 0\},\$
- $\mu \overline{Inter} p(3, seq, 2) = \{$
- $\mu \overline{Interp}((2, \operatorname{no}, 4)) = \{$

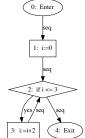


- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Interp}(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, seq, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Inter} p(2, \text{yes}, 3) = \{\{i \mapsto 0\},\$
- $\mu \overline{Inter} p(3, seq, 2) = \{\{i \mapsto 2\},\$
- $\mu \overline{Interp}((2, no, 4)) = \{ \}$

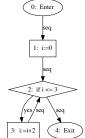


伺 ト イヨト イヨト

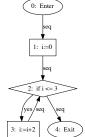
- $\mu \overline{Inter} : E \rightarrow Contexts = \mathcal{P}(Env)$
- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, seq, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Inter} p(2, \text{yes}, 3) = \{\{i \mapsto 0\}, \{i \mapsto 2\}\}$
- $\mu \overline{Inter} p(3, seq, 2) = \{\{i \mapsto 2\},$
- $\mu \overline{Interp}((2, \operatorname{no}, 4)) = \{ \}$



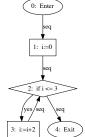
- $\mu \overline{Inter} : E \rightarrow Contexts = \mathcal{P}(Env)$
- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, seq, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Interp}(2, \text{yes}, 3) = \{\{i \mapsto 0\}, \{i \mapsto 2\}\}$
- $\mu \overline{Interp}(3, seq, 2) = \{\{i \mapsto 2\}, \{i \mapsto 4\}\}$
- $\mu \overline{Interp}((2, no, 4)) = \{$



- $\mu \overline{Inter} : E \rightarrow Contexts = \mathcal{P}(Env)$
- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, \operatorname{seq}, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Interp}(2, \text{yes}, 3) = \{\{i \mapsto 0\}, \{i \mapsto 2\}\}$
- $\mu \overline{Interp}(3, seq, 2) = \{\{i \mapsto 2\}, \{i \mapsto 4\}\}$
- $\mu \overline{Interp}((2, \operatorname{no}, 4)) = \{\{i \mapsto 4\}\}$



- $\mu \overline{Inter} : E \rightarrow Contexts = \mathcal{P}(Env)$
- Start with minimal θ_0 assigning no environments to any edge: $\theta_0(e) = \{ \}$
- $\mu \overline{Inter} p(e) = \bigcup_{n \in \mathbb{N}} \overline{Interp}^n(e)$
- $\mu \overline{Interp}(0, seq, 1) = \{\{i \mapsto \bot\}\}$
- $\mu \overline{Interp}(1, \operatorname{seq}, 2) = \{\{i \mapsto 0\}\}$
- $\mu \overline{Interp}(2, \text{yes}, 3) = \{\{i \mapsto 0\}, \{i \mapsto 2\}\}$
- $\mu \overline{Interp}(3, seq, 2) = \{\{i \mapsto 2\}, \{i \mapsto 4\}\}$
- $\mu \overline{Interp}((2, \operatorname{no}, 4)) = \{\{i \mapsto 4\}\}$



Fact: An abstract interpretation (A, \mathcal{I}) is sound (or consistent) with respect to (*Env*, *Interp*) if and only if there exist α , β such that

- α : Contexts \rightarrow A, β : A \rightarrow Contexts
- α , β order preserving
- For all $a \in A$ have $\alpha(\beta(a)) = a$
- For all $S \in Contex$, have $S \subseteq \beta(\alpha(S))$
- For all $e \in E$, $\alpha(\mu \overline{Interp}(e)) = \mu \overline{\mathcal{I}}(e)$
 - The abtract interpretation gives us more possibilities, is less precise

・聞き ・ ヨト・ ・ ヨトー