
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

May 7, 2014

Elsa L Gunter CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha May 7, 2014 1

/ 19

Partial Orders

A partial order on a set S is a binary relation ≤ on S such that

[Refl] s ≤ s for all s ∈ S

[Antisym] s ≤ t and t ≤ s impilies s = t, for all s, t ∈ S

[Trans] s ≤ t and t ≤ u impilies s ≤ u, for all s, t, ∈ S

• a • b • c

• d • e • f

• g
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Upper Bounds and Complete Latices

In a partial order (S ,≤), given X ⊆ S , y is an upper bound for X if
for all x ∈ X we have x ≤ y .

y is a least upper bound of X , y is an upper bound of X and
whenever z is an upper bound of X , y ≤ z .

Note: Least upper bounds are unique.

A complete lattice is a partial order (L,≤) such that for all X ⊆ S
there exists a (unique) least upper bound.

Write lub(X ) or
∨
X for the least upper bound of X .

Write x ∨ y for
∨{x , y}

Note: x ∨ y = x ⇐⇒ y ≤ x

Note: Given a set S , (P(S),⊆) is a complete lattice.

Write ⊥ =
∨{ } and > =

∨
S
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Example Complete Lattices

• {a, b, c}

• {a, b} • {a, c} • {b, c}

• {a} • {b} • {c}

• { }
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• b

• c • d
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Partial Orders, Functions, and Complete Lattices

Let X be an arbitrary set and A and B be partial orders.

A function f : A→ B is order-preserving if, for all x , y ∈ A with
x ≤ y we have f (x) ≤ f (y)

Function f , g : X → A may be ordered by pointwise comparrison:

Write f ≤fun g to mean that for all x ∈ X we have f (x) ≤ g(x)
Will leave off the subcript in general

Fact: ({f | f : X → B},≤fun) is a partial order.

Fact: ({f | f : X → B},≤fun) is a complete lattice if B is.

Fact: ({f | f : A→ B, f order-preserving} ≤fun) is a complete lattice
if B is.
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Control-Flow Graphs

A Control-Flow Graph (for a SIMPL-like language) is a tuple (N, l ,K ,E )
where

N is a finite set of nodes

l : N → {Entry,Exit, i:=e, if b, }
K = {yes, seq}
E ⊆ N × K × N such that

for all m, n, n′ ∈ N and k ∈ K , if (m, k, n) ∈ E and (m, k, n′) ∈ E
then n = n′

if m ∈ N and l(m) = Exit then |{n | ∃k ∈ K . (m, k, n) ∈ E}| = 0
if m ∈ N and l(m) = Entry or l(m) = i := e for some identifier i and
expression e, and (m, k, n) ∈ E then k = seq
if m ∈ N and l(m) = if b for some boolean expression b, then
|{n | ∃k ∈ K . (m, k, n) ∈ E}| = 2
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Example

n:=5; i:=1; p:=1; while n>i do i:=i+1; p:=p*i od
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Abstract Interpretation

Let (N, l ,K ,E ) be a control flow graph.

An abstract interpretation of control flow graphs is a pair (A, I)
where

A is a complete latice and
I : ((E → A)× E )→ A (think next state information vector)
for all f , g ∈ (E → A), for all e ∈ E , if f ≤ g then I(f , e) ≤ I(g , e)
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Abstract Semantics

Can define I : (E → A)→ (E → A) by I(f )(e) = I(f , e)

Fact: I is order-preserving

Tarski’s Fixed-Point Theorem: If A is a complete lattice and
f : A→ A is order-preserving, then f has both a least and a greatest
fixed-point (may or may not be the same).

Fact: There exist c : E → A such that I(c) = c, and that c is the
least such.

Write µI for the least fixed point of I
µI is the abstract semantics of (N, l ,K ,E ) with respect to (A, I).
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Domain for Standard Interpretation

Given (N, l ,K ,E ) a control flow graph with labels using variables
from Var

Let Val = values ∪ {>,⊥}, the extended set of values, ordered as
before

Val is a complete lattice.

Let Env = {ρ | ρ : Var → Val}
Env is a complete lattice
An env used to be a partial function; now map undefined to ⊥
val : (Exp × Env)→ Val
Will assume {true, false} ⊆ values
bval : (BExp × Env)→ {true, false} ∪ {>,⊥} ⊆ Val

Let States = (E ∪ {>,⊥})× Env

States is a complete lattice assuming the order
((e, ρ) ≤ (e ′, ρ′)) ≡ ((e ≤ e ′) ∧ (ρ ≤ ρ′)).
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Transitions in Control Flow Graphs

next state : States → States

next state(>, ρ) = (>, ρ); next state(⊥, ρ) = (⊥, ρ)

next state((m, k, n), ρ) defined by cases on l(n):

l(n) 6= Enter
l(n) = Exit⇒ next state((m, k, n), ρ) = ((m, k , n), ρ)
l(n) = (i := e), then n has unique successor node p,
(n, suc, p) ∈ E .

next state((m, k , n), ρ) = ((n, suc, p), ρ[i 7→ val(e, ρ)])
l(n) = (if b), then n has two out arcs: (n, yes, p) and (n, seq, q)

if bval(b, ρ) = ⊥ then next state((m, k, n), ρ) = (⊥, ρ)
if bval(b, ρ) = > then next state((m, k, n), ρ) = (>, ρ)
bval(b, ρ) = true then
next state((m, k , n), ρ) = ((n, yes, p), ρ)
bval(b, ρ) = false then
next state((m, k , n), ρ) = ((n, suc, q), ρ)

next state is transition semantics for control flow graphs
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Example

Consider the following control flow graph (N, l ,K ,E ) where:

Var = {i}, values = Z
N = {0, 1, 2, 3, 4, 5, 6}
l(0) = Enter, l(1) = i:=0, l(2) = if 1 ≤ 3,
l(3) = i:=i+2, l(4) = Exit

K = {yes, seq}

E =





(0, seq, 1), (1, seq, 2),
(2, yes, 3), (2, seq, 4),
(3, seq, 2)




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Example: next state
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next state((0, seq, 1), {i 7→ ⊥}) = ((1, seq, 2), {i 7→ 0})
next state((1, seq, 2), {i 7→ 0}) = ((2, yes, 3), {i 7→ 0})
next state((2, yes, 3), {i 7→ 0}) =
((3, seq, 2), {i 7→ 0}[i 7→ 0 + 2]) = ((3, seq, 2), {i 7→ 2})
Since {i 7→ 2}(i) = 2 ≤ 3
next state((3, seq, 2), {i 7→ 2}) = ((2, yes, 3), {i 7→ 2})
next state((2, yes, 3), {i 7→ 2}) =
((3, seq, 2), {i 7→ 2}[i 7→ 2 + 2]) = ((3, seq, 2), {i 7→ 4})
Since {i 7→ 4}(i) = 4 6≤ 3
next state((3, seq, 2), {i 7→ 4}) = ((2, seq, 4), {i 7→ 4})
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Standard Interpretation and Semantics

Let Interp(θ, (m, k , n)) be the lifting of next state to sets of
environments (contexts)

Note: l(m) 6= Exit
l(m) = Enter⇒ Interp(θ, (m, k, n)) = {{v 7→ ⊥|v ∈ Var}} =
{λv .⊥}
l(m) 6= Enter⇒
Interp(θ, (m, k, n)) =
{ρ | ∃m′, k ′, ρ′ | (m′, k ′,m) ∈ E∧

ρ′ ∈ θ((m′, k ′,m))∧
next state((m′, k ′,m), ρ′) = ((m, k , n), ρ)}

If θ tells all the environments we might come into our edge with,
Interp(θ, (m, k, n)) tells us the set of environemts we may leave with
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Standard Interpretation and Semantics

Let Contexts = P(Env)

Contexts is a complete lattice
A context corresponds to a formula in prediacte logic over the
program variables

If for all e ∈ E we have θ(e) ⊆ φ(e), then for all e ′ ∈ E we have
Interp(θ, e ′) ⊆ Interp(φ, e ′)

Result: (Contexts, Interp) is an abtract interpretation

Recall: Interp : ((E → Contexts)× E )→ Contexts so
Interp : (E → Contexts)→ (E → Contexts)

µ Interp tells us the best knowledge we can know statically about our
program
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Example: Interp

Let θ map edges to sets of environments. Interp will tell us the set of
environments next state will associate with each edge assuming θ gives a
set of (possibly) possible environments for each predecessor edge:

Since Var = {i}, Interp(θ, (0, seq, 1)) = {{i 7→ ⊥}}
If θ(e) = { } then Interp(θ, e) = { }, so assume θ(e) 6= { }
Interp(θ, (1, seq, 2))
= {ρ | ∃ρ′ ∈ θ((0, seq, 1)) | ρ = ρ′[i 7→ 0]} = {{i 7→ 0}}
Interp(θ, (2, yes, 3)) = {ρ ∈ θ(1, seq, 2) ∪ θ(3, seq, 2) | ρ(i) ≤ 3}
Interp(θ, (3, seq, 2)) = {ρ | ∃ρ′ ∈ θ(2, yes, 3) | ρ = ρ‘[i 7→ ρ′(i) + 2]}
Interp(θ, (2, no, 4)) = {ρ ∈ θ(3, seq, 2) | ρ(i) > 3}

Interp(θ)(e) = Interp(θ, e)

Interp
0
(θ)(e) = { } Interp

n+1
(θ)(e) = Interp(Interp

n
(θ))(e)
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Example: µInterp
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µInter : E → Contexts = P(Env)

Start with minimal θ0 assigning no environments to any edge:
θ0(e) = { }
µInterp(e) =

⋃
n∈N Interp

n
(e)

µInterp(0, seq, 1) = {

{i 7→ ⊥}

}
µInterp(1, seq, 2) = {

{i 7→ 0}

}
µInterp(2, yes, 3) = {

{i 7→ 0},

{i 7→ 2}

}
µInterp(3, seq, 2) = {

{i 7→ 2},

{i 7→ 4}

}
µInterp((2, no, 4)) = {

{i 7→ 4}

}
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Soundness of Abstract Semantics

Fact: An abstract interpretation (A, I) is sound (or consistent) with
respect to (Env , Interp) if and only if there exist α, β such that

α : Contexts → A, β : A→ Contexts

α, β order preserving

For all a ∈ A have α(β(a)) = a

For all S ∈ Contex , have S ⊆ β(α(S))

For all e ∈ E , α(µInterp(e)) = µI(e)

The abtract interpretation gives us more possibilities, is less precise
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