CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys — SPIN Beginners'’
Tutorial

April 25, 2014

Elsa L Gunter CS477 Formal Software Development Method /29

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

atomic

atomic { stat;; stat,; ... stat, }

— can be used to group statements into an atomic sequence;
all statements are executed in a single step
(no interleaving with statements of other processes)

— is executable if stat, is executable / 1o pure atomicity

— if a stat; (with i>1) is blocked, the “atomicity token” is
(temporarily) lost and other processes may do a step

» (Hardware) solution to the mutual exclusion problem:

proctype P(bit i) {
atomic {flag !'= 1; flag = 1; }

mutex++;
mutex--;
flag = 0;
}
@%‘: Thursday 11-Apr- - i ' i)
P ursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial Unlm:{gf:ié

Elsa L Gunter CS477 Formal Software Development Method /29

d step

d step { stat;; stat,; ... stat, }

— more efficient version of atomic: no intermediate states are
generated and stored

— may only contain deterministic steps

— itis a run-time error if stat; (i>1) blocks.

- d step is especially :: Rout?i(v) -> d step {
.y k++;
_useful to_perform _ olk].ind = i
intermediate computations e[k].val = v;
in a single transition i=0; v=0 ;

+ atomic and d_step can be used to lower the number of
states of the model

A
é%{\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48 @

University of Tuiente

Elsa L Gunter CS477 Formal Software Development Method /29

proctype P1() { tla; tlb; tlc } P
proctype P2() { t2a; t2b; t2c } NO GTOm|C|Ty

init { run P1(); run P2() }

Not completely correct as each

@: process has an implicit end-transition...
Yo

N

%" Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49 @

P University of Tivente
Elsa L Gunter CS477 Formal Software Development Method

proctype P1() { atomic {tla; tlb; tlc} } .
proctype P2() { t2a; t2b; c } GTOI’\'\IC
init { run P1(); run P2() }

It is as if P1 has only one transition...

If one of P1's transitions
blocks, these transitions
may get executed

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

A
éév'\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50 'f.'y'

University of Twente
Elsa L Gunter CS477 Formal Software Development Method /29

proctype P1() { d_step {tla; tlb; tlc} }
proctype P2() { t2a; t2b; c } d_STep
init { run P1(); run P2() }

It is as if P1 has only one transition...

No intermediate states will
be constructed.

@: N , @)
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51 ¥

Univarsity of Tivente

Elsa L Gunter CS477 Formal Software Development Method /29

timeout ()

* Promela does not have real-time features.
— In Promela we can only specify functional behaviour.
— Most protocols, however, use timers or a timeout
mechanism to resend messages or acknowledgements.

* timeout
— SPIN’s timeout becomes executable if there is no
other process in the system which is executable
— s0, timeout models a global timeout
— timeout provides an escape from deadlock states
— beware of statements that are always executable...

He N o

$Pe Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53 \ Y

P University of Twente
Elsa L Gunter CS477 Formal Software Development Method /29

goto

goto label

— transfers execution to 1abel
— each Promela statement might be labelled
— quite useful in modelling communication protocols

wait ack:
if
:: B?ACK -> ab#l-ab ; goto success
:: ChunkTimeout?SHAKE ->
if
(rc < MAX) -> rc++; F! (i==1), (i==n) ,ab,d[i];
goto wait_ack
(rc >= MAX) -> goto error

Timeout modelled by a channel.

fi
= b Part of model of BRP
& X
QP‘: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56 {‘J
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /29

unless
{ <stats> } unless { guard; <stats> }

— Statements in <stats> are executed until the first

statement (guard) in the escape sequence becomes
executable.

— resembles exception handling in languages like Java
— Example:

proctype MicroProcessor() ({

{

/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }
}
@: T @)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57 \ ¥

University of Twente
Elsa L Gunter CS477 Formal Software Development Method /29

Communication

Major models of communication
@ Shared variables
e one writes, many read later
@ Point-to-Point synchronous message passing
e one sends, one other receives at the same time
e send blocks until receieve can happen
© Point-to-Point asynchronous message passing
e one sends, one other receives some time later
e send never blocks
@ Point-to-Point buffered message passing
e When buffer not full behaves like asynchronous
e When buffer full, two variations: block or drop message *
e send never blocks
@ Synchronous broadcast
e one sends, many receive synchronously
e First variation: send never blocks process may receive if ready to ready
e Second variation: send blocks until all possible recipients ready to
receive

Elsa L Gunter CS477 Formal Software Development Method / 29

Communication in SPIN

@ With more or less complexity each can implement the others

@ Spin supports 1 and 4 (blocks send when buffer full), but with
bounded buffers

o Buffer size = 0 = synchronous communication

o Large buffer size approximates asynchronous communication

Elsa L Gunter CS477 Formal Software Development Method /29

Communication ()

Sender Receiver

s2r'MsG [
s2r?MSG
r2s!ACK
r2s?ACK I:
! is sending
? is receiving
& X
QP": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36 ﬂ}
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /29

Communication ()

« Communication between processes is via channels:
— message passing

— rendez-vous synchronisation (handshake)

) _~— also called:
* Both are defined as channels: queue or buffer

chan <name> = [<dim>] of {<t;>,<t,>, .. <t >}’
- J

"
name of type of the elements that will be
the channel transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

[1] of {bit};
[2] of {mtype, bit};

| e fmisen, dy; — array of
[1] of {mtype, Record} channels

chan c
chan toR
chan line[2]

@t o @Y
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 \ Y

University of Tierante

Elsa L Gunter CS477 Formal Software Development Method /29

Communication (3)

» channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr,>, <expr,>, .. <expr.>;
» The values of <expr;> should correspond with the types of the
channel declaration.
+ A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel

war>+ Cch ? <var;>, <var,>, .. <var,>; message passing
<const> + If the channel is not empty, the message is fetched from the channel
can bde and the individual parts of the message are stored into the <var;>s.
mixe ch ? <const,;>, <const,>, .. <const,>; message testing

« If the channel is not empty and the message at the front of the
channel evaluates to the individual <const;>, the statement is
executable and the message is removed from the channel.

@: - , %)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38 ¥

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /29

Communication)

* Rendez-vous communication
<dim> ==
The number of elements in the channel is now zero.

— If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

— Both statements will “handshake” and together
take the transition.

+ Example:
chan ch = [0] of {bit, byte};
— P wants to do ch ' 1, 3+7
— Qwantstodo ch 2?2 1, x
— Then after the communication, x will have the value 10.

73 e T Q)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39\ Y

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /29

DEMO

Alternating Bit Protocol ()

 Alternating Bit Protocol
— To every message, the sender adds a bit.

— The receiver acknowledges each message by sending
the received bit back.

— To receiver only excepts messages with a bit that it
excepted to receive.

— If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

& ‘

Psg Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40 @
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /29

E
oo Alternating Bit Protocol (2)

mtype {MSG, ACK} channel proctype Receiver (chan in, out)
,~ length of 2 {
chan toS =l[2]) of {mtype, bit}; bit recvbit;
chan toR ='[2]' of {mtype, bit}; do
S2? : in ? MSG(recvbit) ->
proctype Sender (chan in, out) d out ! ACK (recvbit):;
o
{
bit sendbit, recvbit; }
e init
out ! MSG, sendbit -> {

in ? ACK, recvbit; run Sender (toS, toR);

if run Receiver (toR, toS);
recvbit == sendbit -> }
sendbit = l-sendbit . .
.. else Alternative notation:
£i ch ! MSG(parl, ..)
od ch ? MSG(parl, ..)
}
&@?ﬁ N . B
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 41 ¥
University of Twente
Elsa L Gunter CS477 Formal Software Development Method

/29

mutextwrongl.pml

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */
proctype P(bit i) {
flag !'= 1;
flag = 1;
mutex++;
printf ("MSC: P(%d) has entered section.\n", i); mutex--;
flag = 0;
}
proctype monitor() {
assert(mutex != 2);
}
init {
atomic { run P(0); run P(1); run monitor(); }

3

Elsa L Gunter CS477 Formal Software Development Method /29

SPIN as Simulator

bash-3.2$ spin mutexwrongl.pml
MSC: P(0) has entered section.
MSC: P(1) has entered section.
4 processes created
bash-3.23% !s
spin mutexwrongl.pml
MSC: P(1) has entered section.
MSC: P(0) has entered section.
4 processes created

Elsa L Gunter CS477 Formal Software Development Method /29

SPIN as Model Checker

bash-3.2$ spin -a mutexwrongl.pml
bash-3.2$ 1s -1ltr

total 3520

-rw-r——-r-—- 1 elsa staff 335 Apr 11 23:27 mutexwrongl.pml
-rw-r—-r-- 1 elsa staff 18801 Apr 11 23:28 pan.t
-rw-r——-r-—- 1 elsa staff 54243 Apr 11 23:28 pan.p
-rw-r—-r-—- 1 elsa staff 3450 Apr 11 23:28 pan.m
-rw-r——r-- 1 elsa staff 16489 Apr 11 23:28 pan.h
-rw-r——-r—— 1 elsa staff 309382 Apr 11 23:28 pan.c
-rw-r--r-- 1 elsa staff 919 Apr 11 23:28 pan.b

Elsa L Gunter CS477 Formal Software Development Method /29

SPIN as Model Checker

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

hint: this search is more efficient if pan.c is
compiled -DSAFETY

pan:1: assertion violated (mutex!=2) (at depth 11)

pan: wrote mutexwrongl.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)

invalid end states +

Elsa L Gunter CS477 Formal Software Development Method /29

SPIN as Model Checker

State-vector 44 byte, depth reached 20, errors: 1
121 states, stored
47 states, matched
168 transitions (= stored+matched)
2 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.008 equivalent memory usage for states
(stored*(State-vector + overhead))
0.291 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

a oo d VN WP PSRy P
Elsa L Gunter CS477 Formal Software Development Method

mutextwrongl.pml Error Trace

bash-3.2$ spin -t -p mutexwrongl.pml
using statement merging
Starting P with pid 1

(:init:) mutexwrongl.pml:14 (state 1) [(run P(0)’

Starting P with pid 2

(:init:) mutexwrongl.pml:14 (state 2) [(run P(1):

Starting monitor with pid 3

1: proc O
2: proc O
3: proc O
4: proc 2
5: proc 1
6: proc 2
7: proc 2
8: proc 2
[printf (°MSC:
9: proc 1

Elsa L Gunter

(:init:) mutexwrongl.pml:14 (state 3) [(run monii
(P) mutexwrongl.pml:4 (state 1) [((flag!=1))]

(P) mutexwrongl.pml:4 (state 1) [((flag!=1))]

(P) mutexwrongl.pml:5 (state 2) [flag = 1]

(P) mutexwrongl.pml:6 (state 3) [mutex = (mutex+:
MSC: P(1) has entered section.

(P) mutexwrongl.pml:7 (state 4)

P(%d) has entered section.\n’,i)]

(P) mutexwrongl.pml:5 (state 2) [flag = 1]

CS477 Formal Software Development Method /29

mutextwrongl.pml Error Trace

10: proc 1 (P) mutexwrongl.pml:6 (state 3) [mutex = (mutex+:
MSC: P(0) has entered section.

11: proc 1 (P) mutexwrongl.pml:7 (state 4)

[printf (°’MSC: P(%d) has entered section.\n’,i)]
spin: mutexwrongl.pml:11, Error: assertion violated
spin: text of failed assertion: assert((mutex!=2))

12: proc 3 (monitor) mutexwrongl.pml:11 (state 1)

[assert ((mutex!=2))]

spin: trail ends after 12 steps

Elsa L Gunter CS477 Formal Software Development Method /29

mutextwrongl.pml Error Trace

#processes: 4
flag = 1
mutex = 2
12: proc 3 (monitor) mutexwrongl.pml:12 (state 2) <valid enc
12: proc 2 (P) mutexwrongl.pml:7 (state 5)
12: proc 1 (P) mutexwrongl.pml:7 (state 5)
12: proc 0 (:init:) mutexwrongl.pml:15 (state 5) <valid end
4 processes created
bash-3.2$

Elsa L Gunter CS477 Formal Software Development Method /29

	Additional Compound Statements (Incomplete)
	SPIN Communication
	Sample SPIN Execution

