
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’
Tutorial
April 25, 2014

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 1

/ 29

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477


Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 24

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 47

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step

(no interleaving with statements of other processes)
– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is 

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag  = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48

d_step

d_step { stat1; stat2; ... statn }

– more efficient version of atomic: no intermediate states are 
generated and stored

– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially 
useful to perform 
intermediate computations 
in a single transition

::  Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of 
states of the model
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No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }
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atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.
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It is as if P1 has only one transition…

If one of P1’s transitions 
blocks, these transitions 

may get executed
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d_step proctype P1() { d_step {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

No intermediate states will 
be constructed.
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It is as if P1 has only one transition…
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Checking for pure atomicity

• Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

atomic {  
stat1;

stat2

...

statn

}

2. Change all atomic clauses to:

aflag=1;

aflag=0;

1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag
active process monitor {

assert(!aflag);
}

e.g.
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timeout (1)

• Promela does not have real-time features.
– In Promela we can only specify functional behaviour.
– Most protocols, however, use timers or a timeout 

mechanism to resend messages or acknowledgements.

• timeout
– SPIN’s timeout becomes executable if there is no

other process in the system which is executable
– so, timeout models a global timeout
– timeout provides an escape from deadlock states
– beware of statements that are always executable…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 54

timeout (2)

• Example to recover from message loss:

active proctype Receiver() 
{

bit recvbit;
do
:: toR ? MSG, recvbit -> toS ! ACK, recvbit;
::  timeout -> toS ! ACK, recvbit;
od

}

• Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want to limit the number of premature 
timeouts (see [Ruys & Langerak 1997]).
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Alternating Bit Protocol  (3)

• abp-1.pr
– perfect lines

• abp-2.pr
– stealing daemon (models lossy channels)
– how do we know that the protocol works correctly?

• abp-3.pr
– model different messages by a sequence number
– assert that the protocol works correctly
– how can we be sure that different messages are being 

transmitted?

How large should MAX be 
such that we are sure that 
the ABP works correctly?

only 
three!

DEMO
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goto
goto label
– transfers execution to label
– each Promela statement might be labelled
– quite useful in modelling communication protocols

wait_ack:
if
:: B?ACK -> ab=1-ab ; goto success
:: ChunkTimeout?SHAKE -> 

if
:: (rc < MAX) -> rc++; F!(i==1),(i==n),ab,d[i];

goto wait_ack
:: (rc >= MAX) -> goto error
fi

fi ;

Timeout modelled by a channel.

Part of model of BRP
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unless
{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first 
statement (guard) in the escape sequence becomes 
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{

...
/* execute normal instructions */

} 
unless { port ? INTERRUPT; ... }

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess 

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash: 
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif
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Communication

Major models of communication
1 Shared variables

one writes, many read later
2 Point-to-Point synchronous message passing

one sends, one other receives at the same time
send blocks until receieve can happen

3 Point-to-Point asynchronous message passing
one sends, one other receives some time later
send never blocks

4 Point-to-Point buffered message passing
When buffer not full behaves like asynchronous
When buffer full, two variations: block or drop message *
send never blocks

5 Synchronous broadcast
one sends, many receive synchronously
First variation: send never blocks process may receive if ready to ready
Second variation: send blocks until all possible recipients ready to
receive
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Communication in SPIN

With more or less complexity each can implement the others

Spin supports 1 and 4 (blocks send when buffer full), but with
bounded buffers

Buffer size = 0 =⇒ synchronous communication

Large buffer size approximates asynchronous communication
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mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
::  (state == GREEN)  -> state = YELLOW;
::  (state == YELLOW) -> state = RED;
::  (state == RED)    -> state = GREEN;
od;

}

do-statement  (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela
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Communication  (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving
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Communication  (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called: 
queue or buffer

array of
channels

chan c       = [1] of {bit};
chan toR     = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication  (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the 
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel 
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>,  … <constn>;
• If the channel is not empty and the message at the front of the 

channel evaluates to the individual <consti>, the statement is 
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed
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Communication  (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the 
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol  (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending 
the received bit back.

– To receiver only excepts messages with a bit that it 
excepted to receive. 

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO
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Alternating Bit Protocol  (2)

mtype {MSG, ACK};

chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};

proctype Sender(chan in, out) 
{

bit sendbit, recvbit;
do
:: out ! MSG, sendbit ->

in ? ACK, recvbit;
if
:: recvbit == sendbit -> 

sendbit = 1-sendbit
:: else
fi

od
}

proctype Receiver(chan in, out) 
{
bit recvbit;
do
:: in ? MSG(recvbit) -> 

out ! ACK(recvbit);
od

}

init
{
run Sender(toS, toR);
run Receiver(toR, toS);

}

DEMO

Alternative notation:
ch ! MSG(par1, …)
ch ? MSG(par1, …)

channel 

length of 2
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Cookie: “hippies” problem

Germany Holland

<=

2 pers

<= 60 min?

holes

[Ruys & Brinksma 1998]

5

..

10

..

20

..

25

..

coffee

shop
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mutextwrong1.pml

bit flag; /* signal entering/leaving the section */

byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i); mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init {

atomic { run P(0); run P(1); run monitor(); }

}
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SPIN as Simulator

bash-3.2$ spin mutexwrong1.pml

MSC: P(0) has entered section.

MSC: P(1) has entered section.

4 processes created

bash-3.2$ !s

spin mutexwrong1.pml

MSC: P(1) has entered section.

MSC: P(0) has entered section.

4 processes created
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SPIN as Model Checker

bash-3.2$ spin -a mutexwrong1.pml

bash-3.2$ ls -ltr

total 3520

-rw-r--r-- 1 elsa staff 335 Apr 11 23:27 mutexwrong1.pml

-rw-r--r-- 1 elsa staff 18801 Apr 11 23:28 pan.t

-rw-r--r-- 1 elsa staff 54243 Apr 11 23:28 pan.p

-rw-r--r-- 1 elsa staff 3450 Apr 11 23:28 pan.m

-rw-r--r-- 1 elsa staff 16489 Apr 11 23:28 pan.h

-rw-r--r-- 1 elsa staff 309382 Apr 11 23:28 pan.c

-rw-r--r-- 1 elsa staff 919 Apr 11 23:28 pan.b
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SPIN as Model Checker

bash-3.2$ cc -o pan pan.c

bash-3.2$ ./pan

hint: this search is more efficient if pan.c is

compiled -DSAFETY

pan:1: assertion violated (mutex!=2) (at depth 11)

pan: wrote mutexwrong1.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +
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SPIN as Model Checker

State-vector 44 byte, depth reached 20, errors: 1

121 states, stored

47 states, matched

168 transitions (= stored+matched)

2 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.008 equivalent memory usage for states

(stored*(State-vector + overhead))

0.291 actual memory usage for states

128.000 memory used for hash table (-w24)

0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

pan: elapsed time 0 secondsElsa L Gunter CS477 Formal Software Development Methods
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mutextwrong1.pml Error Trace

bash-3.2$ spin -t -p mutexwrong1.pml

using statement merging

Starting P with pid 1

1: proc 0 (:init:) mutexwrong1.pml:14 (state 1) [(run P(0))]

Starting P with pid 2

2: proc 0 (:init:) mutexwrong1.pml:14 (state 2) [(run P(1))]

Starting monitor with pid 3

3: proc 0 (:init:) mutexwrong1.pml:14 (state 3) [(run monitor())]

4: proc 2 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

5: proc 1 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

6: proc 2 (P) mutexwrong1.pml:5 (state 2) [flag = 1]

7: proc 2 (P) mutexwrong1.pml:6 (state 3) [mutex = (mutex+1)]

MSC: P(1) has entered section.

8: proc 2 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

9: proc 1 (P) mutexwrong1.pml:5 (state 2) [flag = 1]
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mutextwrong1.pml Error Trace

10: proc 1 (P) mutexwrong1.pml:6 (state 3) [mutex = (mutex+1)]

MSC: P(0) has entered section.

11: proc 1 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

spin: mutexwrong1.pml:11, Error: assertion violated

spin: text of failed assertion: assert((mutex!=2))

12: proc 3 (monitor) mutexwrong1.pml:11 (state 1)

[assert((mutex!=2))]

spin: trail ends after 12 steps
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mutextwrong1.pml Error Trace

#processes: 4

flag = 1

mutex = 2

12: proc 3 (monitor) mutexwrong1.pml:12 (state 2) <valid end state>

12: proc 2 (P) mutexwrong1.pml:7 (state 5)

12: proc 1 (P) mutexwrong1.pml:7 (state 5)

12: proc 0 (:init:) mutexwrong1.pml:15 (state 5) <valid end state>

4 processes created

bash-3.2$
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