
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’
Tutorial
April 25, 2014

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 1

/ 29

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 24

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 47

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step

(no interleaving with statements of other processes)
– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48

d_step

d_step { stat1; stat2; ... statn }

– more efficient version of atomic: no intermediate states are
generated and stored

– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially
useful to perform
intermediate computations
in a single transition

:: Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of
states of the model

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 2

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 24

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 47

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step

(no interleaving with statements of other processes)
– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48

d_step

d_step { stat1; stat2; ... statn }

– more efficient version of atomic: no intermediate states are
generated and stored

– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially
useful to perform
intermediate computations
in a single transition

:: Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of
states of the model

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 3

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 25

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49

No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

0

1

2

3

t1a

t1b

t1c

P1

0

1

2

3

t2a

t2b

t2c

P2

Not completely correct as each
process has an implicit end-transition…

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t2at1a

t1b t2a
t2b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t2c

t1a

t1a

t1a

t1c t1b

t1b

t1b

t1c

t1c

t1c

t2c

t2c

t2c

t2b

t2b

t2b

t2a

t2a

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50

atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

If one of P1’s transitions
blocks, these transitions

may get executed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 4

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 25

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49

No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

0

1

2

3

t1a

t1b

t1c

P1

0

1

2

3

t2a

t2b

t2c

P2

Not completely correct as each
process has an implicit end-transition…

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t2at1a

t1b t2a
t2b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t2c

t1a

t1a

t1a

t1c t1b

t1b

t1b

t1c

t1c

t1c

t2c

t2c

t2c

t2b

t2b

t2b

t2a

t2a

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50

atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

If one of P1’s transitions
blocks, these transitions

may get executed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 5

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 26

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51

d_step proctype P1() { d_step {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

No intermediate states will
be constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 52

Checking for pure atomicity

• Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

atomic {
stat1;

stat2

...

statn

}

2. Change all atomic clauses to:

aflag=1;

aflag=0;

1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag
active process monitor {

assert(!aflag);
}

e.g.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 6

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 27

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53

timeout (1)

• Promela does not have real-time features.
– In Promela we can only specify functional behaviour.
– Most protocols, however, use timers or a timeout

mechanism to resend messages or acknowledgements.

• timeout
– SPIN’s timeout becomes executable if there is no

other process in the system which is executable
– so, timeout models a global timeout
– timeout provides an escape from deadlock states
– beware of statements that are always executable…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 54

timeout (2)

• Example to recover from message loss:

active proctype Receiver()
{

bit recvbit;
do
:: toR ? MSG, recvbit -> toS ! ACK, recvbit;
:: timeout -> toS ! ACK, recvbit;
od

}

• Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want to limit the number of premature
timeouts (see [Ruys & Langerak 1997]).

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 7

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 28

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 55

Alternating Bit Protocol (3)

• abp-1.pr
– perfect lines

• abp-2.pr
– stealing daemon (models lossy channels)
– how do we know that the protocol works correctly?

• abp-3.pr
– model different messages by a sequence number
– assert that the protocol works correctly
– how can we be sure that different messages are being

transmitted?

How large should MAX be
such that we are sure that
the ABP works correctly?

only
three!

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56

goto
goto label
– transfers execution to label
– each Promela statement might be labelled
– quite useful in modelling communication protocols

wait_ack:
if
:: B?ACK -> ab=1-ab ; goto success
:: ChunkTimeout?SHAKE ->

if
:: (rc < MAX) -> rc++; F!(i==1),(i==n),ab,d[i];

goto wait_ack
:: (rc >= MAX) -> goto error
fi

fi ;

Timeout modelled by a channel.

Part of model of BRP

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 8

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 29

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57

unless
{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{

...
/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash:
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 9

/ 29

Communication

Major models of communication
1 Shared variables

one writes, many read later
2 Point-to-Point synchronous message passing

one sends, one other receives at the same time
send blocks until receieve can happen

3 Point-to-Point asynchronous message passing
one sends, one other receives some time later
send never blocks

4 Point-to-Point buffered message passing
When buffer not full behaves like asynchronous
When buffer full, two variations: block or drop message *
send never blocks

5 Synchronous broadcast
one sends, many receive synchronously
First variation: send never blocks process may receive if ready to ready
Second variation: send blocks until all possible recipients ready to
receive

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 10

/ 29

Communication in SPIN

With more or less complexity each can implement the others

Spin supports 1 and 4 (blocks send when buffer full), but with
bounded buffers

Buffer size = 0 =⇒ synchronous communication

Large buffer size approximates asynchronous communication

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 11

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 18

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

do-statement (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36

Communication (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 12

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 13

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 14

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 20

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39

Communication (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 15

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 20

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39

Communication (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 16

/ 29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 21

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 41

Alternating Bit Protocol (2)

mtype {MSG, ACK};

chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};

proctype Sender(chan in, out)
{

bit sendbit, recvbit;
do
:: out ! MSG, sendbit ->

in ? ACK, recvbit;
if
:: recvbit == sendbit ->

sendbit = 1-sendbit
:: else
fi

od
}

proctype Receiver(chan in, out)
{
bit recvbit;
do
:: in ? MSG(recvbit) ->

out ! ACK(recvbit);
od

}

init
{
run Sender(toS, toR);
run Receiver(toR, toS);

}

DEMO

Alternative notation:
ch ! MSG(par1, …)
ch ? MSG(par1, …)

channel

length of 2

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 42

Cookie: “hippies” problem

Germany Holland

<=

2 pers

<= 60 min?

holes

[Ruys & Brinksma 1998]

5

..

10

..

20

..

25

..

coffee

shop

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 17

/ 29

mutextwrong1.pml

bit flag; /* signal entering/leaving the section */

byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i); mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init {

atomic { run P(0); run P(1); run monitor(); }

}

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 18

/ 29

SPIN as Simulator

bash-3.2$ spin mutexwrong1.pml

MSC: P(0) has entered section.

MSC: P(1) has entered section.

4 processes created

bash-3.2$!s

spin mutexwrong1.pml

MSC: P(1) has entered section.

MSC: P(0) has entered section.

4 processes created

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 19

/ 29

SPIN as Model Checker

bash-3.2$ spin -a mutexwrong1.pml

bash-3.2$ ls -ltr

total 3520

-rw-r--r-- 1 elsa staff 335 Apr 11 23:27 mutexwrong1.pml

-rw-r--r-- 1 elsa staff 18801 Apr 11 23:28 pan.t

-rw-r--r-- 1 elsa staff 54243 Apr 11 23:28 pan.p

-rw-r--r-- 1 elsa staff 3450 Apr 11 23:28 pan.m

-rw-r--r-- 1 elsa staff 16489 Apr 11 23:28 pan.h

-rw-r--r-- 1 elsa staff 309382 Apr 11 23:28 pan.c

-rw-r--r-- 1 elsa staff 919 Apr 11 23:28 pan.b

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 20

/ 29

SPIN as Model Checker

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

hint: this search is more efficient if pan.c is

compiled -DSAFETY

pan:1: assertion violated (mutex!=2) (at depth 11)

pan: wrote mutexwrong1.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 21

/ 29

SPIN as Model Checker

State-vector 44 byte, depth reached 20, errors: 1

121 states, stored

47 states, matched

168 transitions (= stored+matched)

2 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.008 equivalent memory usage for states

(stored*(State-vector + overhead))

0.291 actual memory usage for states

128.000 memory used for hash table (-w24)

0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

pan: elapsed time 0 secondsElsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 22

/ 29

mutextwrong1.pml Error Trace

bash-3.2$ spin -t -p mutexwrong1.pml

using statement merging

Starting P with pid 1

1: proc 0 (:init:) mutexwrong1.pml:14 (state 1) [(run P(0))]

Starting P with pid 2

2: proc 0 (:init:) mutexwrong1.pml:14 (state 2) [(run P(1))]

Starting monitor with pid 3

3: proc 0 (:init:) mutexwrong1.pml:14 (state 3) [(run monitor())]

4: proc 2 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

5: proc 1 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

6: proc 2 (P) mutexwrong1.pml:5 (state 2) [flag = 1]

7: proc 2 (P) mutexwrong1.pml:6 (state 3) [mutex = (mutex+1)]

MSC: P(1) has entered section.

8: proc 2 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

9: proc 1 (P) mutexwrong1.pml:5 (state 2) [flag = 1]

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 23

/ 29

mutextwrong1.pml Error Trace

10: proc 1 (P) mutexwrong1.pml:6 (state 3) [mutex = (mutex+1)]

MSC: P(0) has entered section.

11: proc 1 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

spin: mutexwrong1.pml:11, Error: assertion violated

spin: text of failed assertion: assert((mutex!=2))

12: proc 3 (monitor) mutexwrong1.pml:11 (state 1)

[assert((mutex!=2))]

spin: trail ends after 12 steps

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 24

/ 29

mutextwrong1.pml Error Trace

#processes: 4

flag = 1

mutex = 2

12: proc 3 (monitor) mutexwrong1.pml:12 (state 2) <valid end state>

12: proc 2 (P) mutexwrong1.pml:7 (state 5)

12: proc 1 (P) mutexwrong1.pml:7 (state 5)

12: proc 0 (:init:) mutexwrong1.pml:15 (state 5) <valid end state>

4 processes created

bash-3.2$

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 25, 2014 25

/ 29

	Additional Compound Statements (Incomplete)
	SPIN Communication
	Sample SPIN Execution

