CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys — SPIN Beginners’
Tutorial

April 25, 2014

Elsa L Gunter CS477 Formal Software Development Methoc

atomic

atomic { stat;; stat,; ... stat, }

— can be used to group statements into an atomic sequence;

all statements are executed in a single step

(no interleaving with statements of other processes)
— is executable if stat, is executable Y4 orue ey
— ifa stat; (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

* (Hardware) solution to the mutual exclusion problem:

proctype P(bit i) {
atomic {flag !'= 1; flag = 1; }
mutex++;
mutex--;
flag = 0;
~ }

&*‘{\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter CS477 Formal Software Development Methoc

a7 ﬂ'}

University of Twente

d step

d step { stat;; stat,; ... stat, }

— more efficient version of atomic: no intermediate states are
generated and stored

— may only contain deterministic steps

— itis a run-time error if stat; (i>1) blocks.

- d_step is especially :: Rout?i(v) -> d step {
.y k++;
yseful to.perform . olk].ind = i;
intermediate computations e[k].val = v;
in a single transition) i=0; v=0 ;

+ atomic and d_step can be used to lower the number of
states of the model

proctype P1() { tla; tlb; tlc }

proctype P2() { t2a; t2b; t2c } NO 0T0m|C|1'y

init { run P1(); run P2() }

Not completely correct as each

@: . 6‘2? o process has an implicit end-transition... .
@P"\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48 (‘J &P'\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial o f9 WJJ
University of Twonta niversity of Twente
Elsa L Gunter CS477 Formal Software Development Methoc i /29 Elsa L Gunter CS477 Formal Software Development Methoc 29
proctype P1() { atomic {tla; tlb; tlc} } . proctype P1() { d step {tla; tlb; tlc} }
proctype P2() { t2a; t2b; e } atomic proctype P2() { t2a; t2b; Qe } d_STeP

init { run P1(); run P2() }

It is as if P1 has only one transition...

If one of P1's transitions
blocks, these transitions
may get executed

Although atomic clauses cannot
be interleaved, the intermediate
i states are still constructed.
20 N ' @)
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50 \%
University of Twente
Elsa L Gunter CSA477 Formal Software Development Methoc

init { run P1(); run P2() }

be constructed.

&%
&3‘4'5 Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter CS477 Formal Software Development Methoc

It is as if P1 has only one transition...

No intermediate states will

51 &

University of Tivente

timeout (1) goto

+ Promela does not have real-time features. goto label
— In Promela we can only specify functional behaviour.
— Most protocols, however, use timers or a timeout
mechanism to resend messages or acknowledgements.

— transfers execution to 1abel
— each Promela statement might be labelled

— quite useful in modelling communication protocols
¢ timeout

wait ack: .
s A . . i Timeout modelled by a channel.
— SPIN’s timeout becomes executable if there is no if 4
. ' . :: B?ACK -> ab#l-ab ; goto success
other process in the system Wth)h is executable Co Err e TR o
— so, timeout models a global timeout if
ki . :: (re < MAX) -> rc++; F!(i==1), (i==n),ab,d[i];
— timeout provides an escape from deadlock states et el ra
— beware of statements that are always executable... i (zrc >= MAX) -> goto error
1
£i ;
Part of model of BRP
§P'\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53 {g Theo C. Ruys - SPIN Beginners' Tutorial 56 r‘}

University of Twente

University of Twente

Elsa L Gunter CS477 Formal Software Development Methoc

Elsa L Gunter CS477 Formal Software Development Methoc

unless

Major models of communication
© Shared variables
e one writes, many read later
@ Point-to-Point synchronous message passing
e one sends, one other receives at the same time

{ <stats> } unless { guard; <stats> }

— Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes

executable. o send blocks until receieve can happen

pp
— resembles exception handling in languages like Java © Point-to-Point asynchronous message passing
— Example: o one sends, one other receives some time later

e send never blocks
©Q Point-to-Point buffered message passing
e When buffer not full behaves like asynchronous
o When buffer full, two variations: block or drop message *

proctype MicroProcessor() {

{

/* execute normal instructions */

) e send never blocks
Synchronous broadcast
unless { port ? INTERRUPT; ... } ° Yy .
) e one sends, many receive synchronously
- o First variation: send never blocks process may receive if ready to ready
8)) FA o Second variation: send blocks until all possible recipients ready to
¢ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57 k‘J .
P University of Twente receive
Elsa L Gunter CS477 Formal Software Development Methoc i /29 Elsa L Gunter CS477 Formal Software Development Methoc . /29

Communication in SPIN

Communication @

s2r _ _ _ _ ______
Sender | Receiver
@ With more or less complexity each can implement the others

@ Spin supports 1 and 4 (blocks send when buffer full), but with sZr!MSGE mse
bounded buffers

o Buffer size = 0 = synchronous communication

[_|s2remsc

. . o ACK
@ Large buffer size approximates asynchronous communication [lz2siack

r2s?ack[__|

! is sending
? is receiving

R £ I) @)
?\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36 \Y

Univarsity of Twants

Elsa L Gunter CS477 Formal Software Development Methoc

Elsa L Gunter CS477 Formal Software Development Methoc

Communication (2

+ Communication between processes is via channels:
— message passing
— rendez-vous synchronisation (handshake)

X also called:
* Both are defined as channels: queue or buffer
chan <name> = [<dim>] of {<t;>,<t,>, .. <t >};
name of type of the elements that will be
the channel transmitted over the channel
number of elements in the channel
dim==0 is special case: rendez-vous
chan c = [1] of {bit};
chan toR = [2] of {mtype, bit}; _ F
han line[2] = [1] of {mt Record} ; sy @
i chan line[2] [1] of {mtype, Record} Aairalls
{\\
/
P‘: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 ﬂ;
University of Twente

Elsa L Gunter

CS477 Formal Software Development Methoc

Communication (3)

« channel = FIFO-buffer (for dim>0)

I Sending - putting a message into a channel
ch ! <expr;>, <expr,>, .. <expr,>;
» The values of <expr;> should correspond with the types of the
channel declaration.
+ A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel

<var>+ Ch ? <var;>, <var,>, .. <var,>; message passing
<const> « If the channel is not empty, the message is fetched from the channel
can b§ and the individual parts of the message are stored into the <var;>s.
mixe:

ch ? <const,>, <const,>, . <const,>; message festing
« If the channel is not empty and the message at the front of the
channel evaluates to the individual <const;>, the statement is
executable and the message is removed from the channel.

38@

University of Twente

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter

CS477 Formal Software Development Methoc

Communication ()

* Rendez-vous communication
<dim>==0
The number of elements in the channel is now zero.

— If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

— Both statements will “handshake” and together
take the transition.

* Example:
chan ch = [0] of {bit, byte};
— P wants to do ch ' 1, 3+7
— Qwants to do ch ? 1, x
— Then after the communication, x will have the value 10.
(2=
SE%QZ‘: Thursday 11-Apr-2002 39 @

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter CS477 Formal Software Development Methoc

DEMO . .
Alternating Bit Protocol (2
mtype {MSG, iCK} Ieﬁ;g}?no?;‘lZ l‘ﬂoctype Receiver (chan in, out)

’
chan toS =1[2],0f {mtype, bit};
chan toR =‘\[2],' of {mtype, bit};

proctype Sender (chan in, out)
{
bit sendbit, recvbit;
do
:: out ! MSG, sendbit ->
in ? ACK, recvbit;

bit recvbit;
do
: in ? MSG(recvbit) ->
out ! ACK(recvbit);
od
}

init
{

run Sender (toS, toR);

if run Receiver (toR, toS);
: recvbit == sendbit -> }
sendbit = l-sendbit R 9
.. else Alternative notation:
fi ch ! MSG(parl, ..)
od ch ? MSG(parl, ..)
}
=2

P’\: Thursday 11-Apr-2002

Elsa L Gunter

Theo C. Ruys - SPIN Beginners' Tutorial

CS477 Formal Software Development Methoc

n By

University of Tvente

PEne Alternating Bit Protocol)

» Alternating Bit Protocol
— To every message, the sender adds a bit.

— The receiver acknowledges each message by sending
the received bit back.

— To receiver only excepts messages with a bit that it
excepted to receive.

— If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial U"im::’)nf{zze
Elsa L Gunter CS477 Formal Software Development Methoc
bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */
proctype P(bit i) {
flag !'= 1;
flag = 1;
mutex++;
printf ("MSC: P(%d) has entered section.\n", i); mutex--;
flag = 0;
}
proctype monitor() {
assert (mutex !'= 2);
}
init {

atomic { run P(0); run P(1); run monitor(); }

}

Elsa L Gunter

CS477 Formal Software Development Methoc

SPIN as Simulator SPIN as Model Checker

bash-3.2$ spin mutexwrongl.pml
MSC: P(0) has entered section.
MSC: P(1) has entered section.
4 processes created
bash-3.2$!s
spin mutexwrongl.pml
MSC: P(1) has entered section.
MSC: P(0) has entered section.
4 processes created

Elsa L Gunter CS477 Formal Software Development Methoc

bash-3.2$ spin -a mutexwrongl.pml
bash-3.2$ 1s -1ltr

total 3520

-rw-r--r-- 1 elsa staff 335 Apr 11 23:27 mutexwrongl.pml
-rw-r--r-- 1 elsa staff 18801 Apr 11 23:28 pan.t
-rw-r--r-- 1 elsa staff 54243 Apr 11 23:28 pan.p
-rw-r--r-- 1 elsa staff 3450 Apr 11 23:28 pan.m
-rw-r--r-- 1 elsa staff 16489 Apr 11 23:28 pan.h
-rw-r--r-- 1 elsa staff 309382 Apr 11 23:28 pan.c
-rw-r--r-- 1 elsa staff 919 Apr 11 23:28 pan.b

Elsa L Gunter

CS477 Formal Software Development Methoc / 2

SPIN as Model Checker SPIN as Model Checker

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

hint: this search is more efficient if pan.c is
compiled -DSAFETY

pan:1: assertion violated (mutex!=2) (at depth 11)

pan: wrote mutexwrongl.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

acceptance cycles - (not selected)
invalid end states +

Elsa L Gunter

CS477 Formal Software Development Methoc

State-vector 44 byte, depth reached 20, errors: 1
121 states, stored
47 states, matched
168 transitions (= stored+matched)
2 atomic steps
hash conflicts: 0 (resolved)
Stats on memory usage (in Megabytes):
0.008 equivalent memory usage for states
(stored*(State-vector + overhead))
0.291 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

Elsa L Gunter

o O oo
CS477 Formal Software Development Methoc

mutextwrongl.pml Error Trace mutextwrongl.pml Error Trace

bash-3.2$ spin -t -p mutexwrongl.pml
using statement merging
Starting P with pid 1

1: proc O (:init:) mutexwrongl.pml:14 (state 1) [(run P(0)]
Starting P with pid 2

2: proc O (:init:) mutexwrongl.pml:14 (state 2) [(run P(1)]
Starting monitor with pid 3

3: proc O (:init:) mutexwrongl.pml:14 (state 3) [(run monif

4: proc 2 (P) mutexwrongl.pml:4 (state 1) [((flag!=1))]

5: proc 1 (P) mutexwrongl.pml:4 (state 1) [((flag!=1))]

6: proc 2 (P) mutexwrongl.pml:5 (state 2) [flag = 1]

7: proc 2 (P) mutexwrongl.pml:6 (state 3) [mutex = (mutex+]

MSC: P(1) has entered section.
8: proc 2 (P) mutexwrongl.pml:7 (state 4)
[printf (°MSC: P(%d) has entered section.\n’,i)]
9: proc 1 (P) mutexwrongl.pml:5 (state 2) [flag = 1]

Elsa L Gunter CS477 Formal Software Development Methoc

10: proc 1 (P) mutexwrongl.pml:6 (state 3) [mutex = (mutex+]
MSC: P(0) has entered section.
11: proc 1 (P) mutexwrongl.pml:7 (state 4)
[printf (°MSC: P(/%d) has entered section.\n’,i)]
spin: mutexwrongl.pml:11, Error: assertion violated
spin: text of failed assertion: assert((mutex!=2))
12: proc 3 (monitor) mutexwrongl.pml:11 (state 1)
[assert ((mutex!=2))]
spin: trail ends after 12 steps

Elsa L Gunter

CS477 Formal Software Development Methoc

mutextwrongl.pml Error Trace

#processes: 4
flag = 1
mutex = 2

12: proc 3 (monitor) mutexwrongl.pml:12 (state 2) <valid eng

12: proc 2 (P) mutexwrongl.pml:7 (state 5)

12: proc 1 (P) mutexwrongl.pml:7 (state 5)

12: proc O (:init:) mutexwrongl.pml:15 (state 5) <valid end
4 processes created
bash-3.2$

Elsa L Gunter CS477 Formal Software Development Methoc

