CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys — SPIN Beginners'’
Tutorial

April 23, 2014

Elsa L Gunter CS477 Formal Software Development Method /19

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Hello World

/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {
printf ("Hello process, my pid is: %d\n", _pid);

}
init {
int lastpid;
printf ("init process, my pid is: %d\n", _pid);
lastpid = run Hello(Q);
printf ("last pid was: %d\n", lastpid);
}

Elsa L Gunter CS477 Formal Software Development Method /19

Hello World, Sample Execution

bash-3.2$ spin hello.pml
init process, my pid is: 1
Hello process, my pid is: O
Hello process, my pid is: 2
last pid was: 2
3 processes created
bash-3.2% spin hello.pml
Hello process, my pid is: O
init process, my pid is: 1
last pid was: 2
Hello process, my pid is: 2
3 processes created

Elsa L Gunter CS477 Formal Software Development Method /19

Hello Processes

CS477 Formal Software Development Method

Hello Processes Interleavings

Elsa L Gunter CS477 Formal Software Development Method /19

Interleaving Semantics

Promela processes execute concurrently.

Non-deterministic scheduling of the processes.
@ Processes are interleaved

e Only one process can execute a statement at each point in time.
e Exception: rendez-vous communication.

All statements are atomic

e Each statement is executed without interleaving it parts with other
processes.

Each process may have several different possible actions enabled at
each point of execution.

o Only one choice is made, non-deterministically (randomly).

Elsa L Gunter CS477 Formal Software Development Method / 19

Variables and Types ()

Basic types
+ Five different (integer) bit turn=l;
basic types. bool flag;
byte counter;
* Arrays short s;

int msg;

* Records (structs) Arrays
\

* Type conflicts are detected byte a[27];
at runtime. bit flags[4];
Typedef (records)

» Default initial value of basic
typedef Record {

variables (local and global) short £1;
is 0. R
« mtype !
ype (message type) one Record rr;
user-defined enum type rr.fl = ..
é‘,;: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter CS477 Formal Software Development Method

[0..1]
[0..1]

[0..255]
[-216-1.. 216 1]
[-2%21.. 232 1]

array
indicing
start at O

variable
declaration

20 &

Uity of Toerate

/19

Variables and Types (2

« Variables should be int ii;
declared Pt bb:
' o dls __— assighment =
+ Variables can be given a 1i=2:
value by:
— assignment short s=-1;— declaration +
) initialisation
— argument passing typedef Foo {
— message passing bit bb;
(see communication)) ant i3;
. . : Foo £f;
Variables can be used in £.bb = 0
expressions. £.ii = -2;
equal fest ==

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

ii*s+27 == 23;
printf (“value: %d”, s*s);

& X
QP": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21 &J

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

Statements)

The body of a process consists of a sequence of

statements. A statement is either executable/blocked

— executable: the statement can ii';:gdosfi';‘:hse g\[‘:r’r?'
be executed immediately. —

— blocked: the statement cannot be executed.
An assignment is always executable.

An expression is also a statement; it is executable if it
evaluates to non-zero.

2 <3 always executable
x < 27 only executable if value of x is smaller 27
3+ x executable if x is not equal to -3
@t N . G
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22 \'y
University of Twente

Elsa L Gunter CS477 Formal Software Development Method

/19

Statements are

Statements (2 separated by a

semi-colon: *;".
» The skip statement is always executable.
— “does nothing”, only changes process’ process counter

* A run statement is only executable if a new process can be
created (remember: the number of processes is bounded).

* Aprintf statementis always executable (but is not
evaluated during verification, of course).

int x;
proctype Aap ()

t Executable if Noot can
LiiE YL be created...
skip;

run Noot() ;

x=2; /_ Can only become executable
x>2 && y==1; if a some other process
skip; makes x greater than 2.
}
@: Thursday 11-Apr- - inners’ i)
P ursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial U".mfjuf;:ﬂe

Elsa L Gunter CS477 Formal Software Development Method /19

Statements ()

* assert (<expr>) ;
— The assert-statement is always executable.
— If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.
— The assert-statement is often used within Promela models,
to check whether certain properties are valid in a state.
proctype monitor () {

assert(n <= 3);

}
proctype receiver() {

toReceiver ? msg;
assert(msg != ERROR) ;

b
Q ": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24 @

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

WRONG!

DEMO .
Mutual Exclusion @)
bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */
proctype P(bit i) {
1 ~ 1.1
y £lag 1= 1;9 models:
i flag =1;, while (flag == 1) /* wait */;
mutex++;

printf ("MSC: P(%d) has entered section.\n", i);
mutex--;
flag = 0;

Problem: assertion violation!

}
roct monitor() { Both processes can pass the
proc ypi(°t1 ol o flag !'= 1 “at the same time",
} assertimutex == £); i.e. before flag is set to 1.
init {
atomic { run P(0); run P(l); run monitor(); }
} ~ ~" =
@: starts two instances of process P
)
QP" Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 28 @
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

WRONG!

DEMO .
Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype B() {

active proctype A() {

xS 1 i~ Process A waits for

1

y == 0;

mutex++; process B fo end. mutex++;

mutex--; \mutex—— ;

x=0; y =0;
}

x == 0;

}
active proctype monitor() {
assert (mutex != 2);

Problem: invalid-end-statel

Both processes can pass execute
1 “at the same time",

x =landy =
and will then be waiting for each other.
@t N . a
Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 9
University of Twente

Elsa L Gunter CS477 Formal Software Development Method

/19

DEMO . Dekker [1962]
Mutual Exclusion 3)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */
active proctype A() { active proctype B() {
x=1; y=1;
turn = B_TURN; turn = A TURN;
y =0 I] x =0 [
(turn == A TURN) ; (turn == B _TURN) ;
mutex++; mutex++;
mutex--; . -
‘<0 Can be generalised mufe’g_
] ’ toasingle process.) y ="
active proctype monitor() {
assert (mutex != 2);
} H w n .
First “software-only” solution to the
mutex problem (for two processes).
@t i A
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30 \ Y
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

DEMO . Bakery
Mutual Exclusion ()

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) { Problem (in Promela/SPIN):
do / turn[i] will overrun after 255.
:: turnli] =1; _ _ [___ -
turn[i] = turn[l-i] + 1;,
(turn[l-i] == 0) || (turn[i] < turn[l-i]);
mutex++;
mutex--;
turn[i] = 0;
sl More mutual exclusion algorithms
} in (good-old) [Ben-Ari 1990].
proctype monitor() { assert(mutex !'= 2); }

init { atomic {run P(0); run P(l); run monitor()}}

&

& o G
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31\ Y

University of Tueente
Elsa L Gunter CS477 Formal Software Development Method

/19

inspired by:
3 Dijkstra's guarded
if-statement) command language

if
choice; -> stat; ;; stat; ,; stat; ;;
choice, -> stat, ,; stat, ,; stat, ;;
choice, -> stat, ,; stat, ,; stat, ;;
fi;

» Ifthere is at least one choice; (guard) executable, the i f-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

* If no choice; is executable, the i£-statement is blocked.

» The operator “->” is equivalent to “;”. By convention, it is used
within i£-statements to separate the guards from the
statements that follow the guards.

& X
QP": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32 &}

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

if-statement (2

if
:: (n %2 '=0) ->n=1 * The else guard becomes
(n >= 0) -> n=n-2 executable if none of the
7o (n%3==10) ->n=3 other guards is executable.
:: else -> skip
fi
give n a random value non-deterministic branching
if
:: skip -> n=0
skip -> n=1
skip -> n=2
skip -> n=3

éi_

skips are redundant, because assignments

are themselves always executable...
@ M|
P": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33 @

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

do-statement ()

do
choice; -> stat; ;; stat, ,; stat; j;
choice, -> stat, ;; stat, ,; stat,; ;;

choice, -> stat, ,; stat, ,; stat, ;;
od;

+ With respect to the choices, a do-statement behaves in the
same way as an if-statement.

* However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

* The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

Y
ég‘{‘: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34 &)

University of Tweante

Elsa L Gunter CS477 Formal Software Development Method /19

do-statement (2

if- and do-statements

+ Example — modelling a traffic light are ordinary Promela
statements; so they can
be nested.

mtype = { RED, YELLOW, GREEN } ;
mtype (message type) models enumerations in Promela

active proctype TrafficLight() {
byte state = GREEN;

do
(state == GREEN) -> state = YELLOW;
(state == YELLOW) -> state = RED;
(state == RED) -> state = GREEN;
od;
} Note: this do-loop does not contain
any non-deterministic choice.
égé%\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial U"imi?ofge

Elsa L Gunter CS477 Formal Software Development Method /19

Communication

Major models of communication
@ Shared variables
e one writes, many read later
@ Point-to-Point synchronous message passing
e one sends, one other receives at the same time
e send blocks until receieve can happen
© Point-to-Point asynchronous message passing
e one sends, one other receives some time later
e send never blocks
@ Point-to-Point buffered message passing
e When buffer not full behaves like asynchronous
e When buffer full, two variations: block or drop message
e send never blocks
@ Synchronous broadcast
e one sends, many receive synchronously
e First variation: send never blocks process may receive if ready to ready
e Second variation: send blocks until all possible recipients ready to
receive

Elsa L Gunter CS477 Formal Software Development Method / 19

Communication in SPIN

@ With more or less complexity each can implement the others

@ Spin supports 1 and 4 (blocks send when buffer full), but with
bounded buffers

o Buffer size = 0 = synchronous communication

o Large buffer size approximates asynchronous communication

Elsa L Gunter CS477 Formal Software Development Method /19

Communication ()

Sender Receiver

s2r'MsG [
s2r?MSG
r2s!ACK
r2s?ACK I:
! is sending
? is receiving
& X
QP": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36 ﬂ}
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

Communication ()

« Communication between processes is via channels:
— message passing

— rendez-vous synchronisation (handshake)

) _~— also called:
* Both are defined as channels: queue or buffer

chan <name> = [<dim>] of {<t;>,<t,>, .. <t >}’
- J

"
name of type of the elements that will be
the channel transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

[1] of {bit};
[2] of {mtype, bit};

| e fmisen, dy; — array of
[1] of {mtype, Record} channels

chan c
chan toR
chan line[2]

@t o @Y
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 \ Y

University of Tierante

Elsa L Gunter CS477 Formal Software Development Method /19

Communication (3)

» channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr,>, <expr,>, .. <expr.>;
» The values of <expr;> should correspond with the types of the
channel declaration.
+ A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel

war>+ Cch ? <var;>, <var,>, .. <var,>; message passing
<const> + If the channel is not empty, the message is fetched from the channel
can bde and the individual parts of the message are stored into the <var;>s.
mixe ch ? <const,;>, <const,>, .. <const,>; message testing

« If the channel is not empty and the message at the front of the
channel evaluates to the individual <const;>, the statement is
executable and the message is removed from the channel.

@: - , %)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38 ¥

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

Communication)

* Rendez-vous communication
<dim> ==
The number of elements in the channel is now zero.

— If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

— Both statements will “handshake” and together
take the transition.

+ Example:
chan ch = [0] of {bit, byte};
— P wants to do ch ' 1, 3+7
— Qwantstodo ch 2?2 1, x
— Then after the communication, x will have the value 10.

73 e T Q)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39\ Y

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

DEMO

Alternating Bit Protocol ()

 Alternating Bit Protocol
— To every message, the sender adds a bit.

— The receiver acknowledges each message by sending
the received bit back.

— To receiver only excepts messages with a bit that it
excepted to receive.

— If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

& ‘

Psg Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40 @
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

E
oo Alternating Bit Protocol (2)

mtype {MSG, ACK} channel proctype Receiver (chan in, out)
,~ length of 2 {
chan toS =l[2]) of {mtype, bit}; bit recvbit;
chan toR ='[2]' of {mtype, bit}; do
S2? : in ? MSG(recvbit) ->
proctype Sender (chan in, out) d out ! ACK (recvbit):;
o
{
bit sendbit, recvbit; }
e init
out ! MSG, sendbit -> {

in ? ACK, recvbit; run Sender (toS, toR);

if run Receiver (toR, toS);
recvbit == sendbit -> }
sendbit = l-sendbit . .
.. else Alternative notation:
£i ch ! MSG(parl, ..)
od ch ? MSG(parl, ..)
}
&@?ﬁ N . B
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 41 ¥
University of Twente
Elsa L Gunter CS477 Formal Software Development Method

/19

atomic

atomic { stat;; stat,; ... stat, }

— can be used to group statements into an atomic sequence;
all statements are executed in a single step
(no interleaving with statements of other processes)

— is executable if stat, is executable / 1o pure atomicity

— if a stat; (with i>1) is blocked, the “atomicity token” is
(temporarily) lost and other processes may do a step

» (Hardware) solution to the mutual exclusion problem:

proctype P(bit i) {
atomic {flag !'= 1; flag = 1; }

mutex++;
mutex--;
flag = 0;
}
@%‘: Thursday 11-Apr- - i ' i)
P ursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial Unlm:{gf:ié

Elsa L Gunter CS477 Formal Software Development Method /19

d step

d step { stat;; stat,; ... stat, }

— more efficient version of atomic: no intermediate states are
generated and stored

— may only contain deterministic steps

— itis a run-time error if stat; (i>1) blocks.

- d step is especially :: Rout?i(v) -> d step {
.y k++;
_useful to_perform _ olk].ind = i
intermediate computations e[k].val = v;
in a single transition i=0; v=0 ;

+ atomic and d_step can be used to lower the number of
states of the model

A
é%{\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48 @

University of Tuiente

Elsa L Gunter CS477 Formal Software Development Method /19

proctype P1() { tla; tlb; tlc } P
proctype P2() { t2a; t2b; t2c } NO GTOm|C|Ty

init { run P1(); run P2() }

Not completely correct as each

@: process has an implicit end-transition...
Yo

N

%" Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49 @

P University of Tivente
Elsa L Gunter CS477 Formal Software Development Method

proctype P1() { atomic {tla; tlb; tlc} } .
proctype P2() { t2a; t2b; c } GTOI’\'\IC
init { run P1(); run P2() }

It is as if P1 has only one transition...

If one of P1's transitions
blocks, these transitions
may get executed

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

A
éév'\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50 'f.'y'

University of Twente
Elsa L Gunter CS477 Formal Software Development Method /19

proctype P1() { d_step {tla; tlb; tlc} }
proctype P2() { t2a; t2b; c } d_STep
init { run P1(); run P2() }

It is as if P1 has only one transition...

No intermediate states will
be constructed.

@: N , @)
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51 ¥

Univarsity of Tivente

Elsa L Gunter CS477 Formal Software Development Method /19

Checking for pure atomicity

» Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

1. Add a global bit variable: » 2. Change all atomic clauses to:

bit aflag; Rt
stat,;
‘ aflag=1;
stat,
3. Check that aflag is always O.
[1'aflag
. . stat,
e.g. active process monitor ({
assert(!aflag) ; aflag=0;
} }
S s Tt &
P ursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 52 Y
University of Tivente

Elsa L Gunter CS477 Formal Software Development Method /19

timeout ()

* Promela does not have real-time features.
— In Promela we can only specify functional behaviour.
— Most protocols, however, use timers or a timeout
mechanism to resend messages or acknowledgements.

* timeout
— SPIN’s timeout becomes executable if there is no
other process in the system which is executable
— s0, timeout models a global timeout
— timeout provides an escape from deadlock states
— beware of statements that are always executable...

He N o

$Pe Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53 \ Y

P University of Twente
Elsa L Gunter CS477 Formal Software Development Method /19

timeout (1)

* Promela does not have real-time features.
— In Promela we can only specify functional behaviour.

— Most protocols, however, use timers or a timeout
mechanism to resend messages or acknowledgements.

* timeout
— SPIN’s timeout becomes executable if there is no
other process in the system which is executable
— s0, timeout models a global timeout
— timeout provides an escape from deadlock states
— beware of statements that are always executable...

79 N . G
‘,‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53 W

University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

goto

goto label

— transfers execution to 1abel
— each Promela statement might be labelled
— quite useful in modelling communication protocols

wait ack:
if
:: B?ACK -> ab#l-ab ; goto success
:: ChunkTimeout?SHAKE ->
if
(rc < MAX) -> rc++; F! (i==1), (i==n) ,ab,d[i];
goto wait_ack
(rc >= MAX) -> goto error

Timeout modelled by a channel.

fi
= b Part of model of BRP
& X
QP‘: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56 {‘J
University of Twente

Elsa L Gunter CS477 Formal Software Development Method /19

unless
{ <stats> } unless { guard; <stats> }

— Statements in <stats> are executed until the first

statement (guard) in the escape sequence becomes
executable.

— resembles exception handling in languages like Java
— Example:

proctype MicroProcessor() ({

{

/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }
}
@: T @)
P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57 \ ¥

University of Twente
Elsa L Gunter CS477 Formal Software Development Method /19

unless

{ <stats> } unless { guard; <stats> }

— Statements in <sfats> are executed until the first
statement (guard) in the escape sequence becomes

executable.
— resembles exception handling in languages like Java
— Example:
proctype MicroProcessor() {
{
/* execute normal instructions */
}
unless { port ? INTERRUPT; ... }
}
Q% ": Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57 @

University of Twente
Elsa L Gunter CS477 Formal Software Development Method

/19

inline - poor man's procedures

* Promela also has its own macro-expansion feature using

the inline-construct.

inline init array(a) {

d step {
Ti=0; — Should be declared somewhere

do else (probably as a local variable).

i<N -> a[i] = 0; i++
else -> break

od;

i=0;

} T Be sure to reset temporary variables.

}

— error messages are more useful than when using #define

— cannot be used as expression
— all variables should be declared somewhere else

Q% '\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter CS477 Formal Software Development Method

59@

University of Twante

/19

	SPIN Syntax

