
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’
Tutorial
April 23, 2014

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 1

/ 19

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Hello World

/* A "Hello World" Promela model for SPIN. */

active proctype Hello() {

printf("Hello process, my pid is: %d\n", pid);

}

init {

int lastpid;

printf("init process, my pid is: %d\n", pid);

lastpid = run Hello();

printf("last pid was: %d\n", lastpid);

}

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 2

/ 19

Hello World, Sample Execution

bash-3.2$ spin hello.pml

init process, my pid is: 1

Hello process, my pid is: 0

Hello process, my pid is: 2

last pid was: 2

3 processes created

bash-3.2$ spin hello.pml

Hello process, my pid is: 0

init process, my pid is: 1

last pid was: 2

Hello process, my pid is: 2

3 processes created

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 3

/ 19

Hello Processes

Hello()

print "Hello"

init()

print "init"

run Hello()

print "last"

Hello()

print "Hello"

hhhhhhhhhhz

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 4

/ 19

Hello Processes Interleavings

Hello()

print "Hello"��
��

��
��
��*

 :

hh hh hh hh hhz

HH
HH

HH
HH
HHj

init()

print "init"

run Hello()

print "last"

Hello()

print "Hello"PP
PP

PP
PP

PPi

`̀`̀`̀`̀`̀y

((((((((((9

hhhhhhhhhhz

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 5

/ 19

Interleaving Semantics

Promela processes execute concurrently.

Non-deterministic scheduling of the processes.

Processes are interleaved

Only one process can execute a statement at each point in time.
Exception: rendez-vous communication.

All statements are atomic

Each statement is executed without interleaving it parts with other
processes.

Each process may have several different possible actions enabled at
each point of execution.

Only one choice is made, non-deterministically (randomly).

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 6

/ 19

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 7

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 8

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 9

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.

– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be

created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not

evaluated during verification, of course).

int x;
proctype Aap()
{
int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.

– If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.

– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.

proctype monitor() {
assert(n <= 3);

}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 10

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.

– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be

created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not

evaluated during verification, of course).

int x;
proctype Aap()
{
int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.

– If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.

– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.

proctype monitor() {
assert(n <= 3);

}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 11

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 14

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 27

Xspin in a nutshell

• Xspin allows the user to
– edit Promela models (+ syntax check)
– simulate Promela models

• random
• interactive
• guided

– verify Promela models
• exhaustive
• bitstate hashing mode

– additional features
• Xspin suggest abstractions to a Promela model (slicing)
• Xspin can draw automata for each process
• LTL property manager
• Help system (with verification/simulation guidelines)

with dialog boxes to set
various options and directives

to tune the verification process

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 28

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i);

mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init {

atomic { run P(0); run P(1); run monitor(); }

}

Mutual Exclusion (1)
WRONG!

starts two instances of process P

DEMO

models:
while (flag == 1) /* wait */;

Problem: assertion violation!
Both processes can pass the
flag != 1 “at the same time”,
i.e. before flag is set to 1.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 12

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 15

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 ||
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 ||
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 13

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 15

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 ||
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 ||
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 14

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 16

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {

do

:: turn[i] = 1;

turn[i] = turn[1-i] + 1;

(turn[1-i] == 0) || (turn[i] < turn[1-i]);

mutex++;

mutex--;

turn[i] = 0;

od

}

proctype monitor() { assert(mutex != 2); }

init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/SPIN):
turn[i] will overrun after 255.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.

• The operator “->” is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

if

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

fi;

inspired by:
Dijkstra’s guarded
command language

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 15

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 16

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {

do

:: turn[i] = 1;

turn[i] = turn[1-i] + 1;

(turn[1-i] == 0) || (turn[i] < turn[1-i]);

mutex++;

mutex--;

turn[i] = 0;

od

}

proctype monitor() { assert(mutex != 2); }

init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/SPIN):
turn[i] will overrun after 255.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.

• The operator “->” is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

if

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

fi;

inspired by:
Dijkstra’s guarded
command language

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 16

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 17

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 18

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 18

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

do-statement (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36

Communication (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 19

/ 19

Communication

Major models of communication
1 Shared variables

one writes, many read later
2 Point-to-Point synchronous message passing

one sends, one other receives at the same time
send blocks until receieve can happen

3 Point-to-Point asynchronous message passing
one sends, one other receives some time later
send never blocks

4 Point-to-Point buffered message passing
When buffer not full behaves like asynchronous
When buffer full, two variations: block or drop message
send never blocks

5 Synchronous broadcast
one sends, many receive synchronously
First variation: send never blocks process may receive if ready to ready
Second variation: send blocks until all possible recipients ready to
receive

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 20

/ 19

Communication in SPIN

With more or less complexity each can implement the others

Spin supports 1 and 4 (blocks send when buffer full), but with
bounded buffers

Buffer size = 0 =⇒ synchronous communication

Large buffer size approximates asynchronous communication

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 21

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 18

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

do-statement (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36

Communication (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 22

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 23

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 24

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 20

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39

Communication (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 25

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 20

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39

Communication (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 26

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 21

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 41

Alternating Bit Protocol (2)

mtype {MSG, ACK};

chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};

proctype Sender(chan in, out)
{

bit sendbit, recvbit;
do
:: out ! MSG, sendbit ->

in ? ACK, recvbit;
if
:: recvbit == sendbit ->

sendbit = 1-sendbit
:: else
fi

od
}

proctype Receiver(chan in, out)
{
bit recvbit;
do
:: in ? MSG(recvbit) ->

out ! ACK(recvbit);
od

}

init
{
run Sender(toS, toR);
run Receiver(toR, toS);

}

DEMO

Alternative notation:
ch ! MSG(par1, …)
ch ? MSG(par1, …)

channel

length of 2

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 42

Cookie: “hippies” problem

Germany Holland

<=

2 pers

<= 60 min?

holes

[Ruys & Brinksma 1998]

5

..

10

..

20

..

25

..

coffee

shop

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 27

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 24

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 47

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step

(no interleaving with statements of other processes)
– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48

d_step

d_step { stat1; stat2; ... statn }

– more efficient version of atomic: no intermediate states are
generated and stored

– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially
useful to perform
intermediate computations
in a single transition

:: Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of
states of the model

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 28

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 24

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 47

atomic

atomic { stat1; stat2; ... statn }

– can be used to group statements into an atomic sequence;
all statements are executed in a single step

(no interleaving with statements of other processes)
– is executable if stat1 is executable
– if a stati (with i>1) is blocked, the “atomicity token” is

(temporarily) lost and other processes may do a step

• (Hardware) solution to the mutual exclusion problem:

no pure atomicity

proctype P(bit i) {
atomic {flag != 1; flag = 1; }
mutex++;
mutex--;
flag = 0;

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 48

d_step

d_step { stat1; stat2; ... statn }

– more efficient version of atomic: no intermediate states are
generated and stored

– may only contain deterministic steps
– it is a run-time error if stati (i>1) blocks.

– d_step is especially
useful to perform
intermediate computations
in a single transition

:: Rout?i(v) -> d_step {
k++;
e[k].ind = i;
e[k].val = v;
i=0; v=0 ;

}

• atomic and d_step can be used to lower the number of
states of the model

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 29

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 25

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49

No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

0

1

2

3

t1a

t1b

t1c

P1

0

1

2

3

t2a

t2b

t2c

P2

Not completely correct as each
process has an implicit end-transition…

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t2at1a

t1b t2a
t2b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t2c

t1a

t1a

t1a

t1c t1b

t1b

t1b

t1c

t1c

t1c

t2c

t2c

t2c

t2b

t2b

t2b

t2a

t2a

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50

atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

If one of P1’s transitions
blocks, these transitions

may get executed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 30

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 25

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 49

No atomicityproctype P1() { t1a; t1b; t1c }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

0

1

2

3

t1a

t1b

t1c

P1

0

1

2

3

t2a

t2b

t2c

P2

Not completely correct as each
process has an implicit end-transition…

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

t2at1a

t1b t2a
t2b

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

t2c

t1a

t1a

t1a

t1c t1b

t1b

t1b

t1c

t1c

t1c

t2c

t2c

t2c

t2b

t2b

t2b

t2a

t2a

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 50

atomic proctype P1() { atomic {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

Although atomic clauses cannot
be interleaved, the intermediate
states are still constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

If one of P1’s transitions
blocks, these transitions

may get executed

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 31

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 26

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51

d_step proctype P1() { d_step {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

No intermediate states will
be constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 52

Checking for pure atomicity

• Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

atomic {
stat1;

stat2

...

statn

}

2. Change all atomic clauses to:

aflag=1;

aflag=0;

1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag
active process monitor {

assert(!aflag);
}

e.g.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 32

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 26

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 51

d_step proctype P1() { d_step {t1a; t1b; t1c} }
proctype P2() { t2a; t2b; t2c }
init { run P1(); run P2() }

No intermediate states will
be constructed.

(0,0)

(1,0) (0,1)

(1,1)(2,0)

(2,1)

(3,1)

(3,0)
(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

It is as if P1 has only one transition…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 52

Checking for pure atomicity

• Suppose we want to check that none of the atomic clauses
in our model are ever blocked (i.e. pure atomicity).

atomic {
stat1;

stat2

...

statn

}

2. Change all atomic clauses to:

aflag=1;

aflag=0;

1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag
active process monitor {

assert(!aflag);
}

e.g.

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 33

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 27

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53

timeout (1)

• Promela does not have real-time features.
– In Promela we can only specify functional behaviour.
– Most protocols, however, use timers or a timeout

mechanism to resend messages or acknowledgements.

• timeout
– SPIN’s timeout becomes executable if there is no

other process in the system which is executable
– so, timeout models a global timeout
– timeout provides an escape from deadlock states
– beware of statements that are always executable…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 54

timeout (2)

• Example to recover from message loss:

active proctype Receiver()
{

bit recvbit;
do
:: toR ? MSG, recvbit -> toS ! ACK, recvbit;
:: timeout -> toS ! ACK, recvbit;
od

}

• Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want to limit the number of premature
timeouts (see [Ruys & Langerak 1997]).

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 34

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 27

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 53

timeout (1)

• Promela does not have real-time features.
– In Promela we can only specify functional behaviour.
– Most protocols, however, use timers or a timeout

mechanism to resend messages or acknowledgements.

• timeout
– SPIN’s timeout becomes executable if there is no

other process in the system which is executable
– so, timeout models a global timeout
– timeout provides an escape from deadlock states
– beware of statements that are always executable…

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 54

timeout (2)

• Example to recover from message loss:

active proctype Receiver()
{

bit recvbit;
do
:: toR ? MSG, recvbit -> toS ! ACK, recvbit;
:: timeout -> toS ! ACK, recvbit;
od

}

• Premature timeouts can be modelled by replacing the
timeout by skip (which is always executable).

One might want to limit the number of premature
timeouts (see [Ruys & Langerak 1997]).

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 35

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 28

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 55

Alternating Bit Protocol (3)

• abp-1.pr
– perfect lines

• abp-2.pr
– stealing daemon (models lossy channels)
– how do we know that the protocol works correctly?

• abp-3.pr
– model different messages by a sequence number
– assert that the protocol works correctly
– how can we be sure that different messages are being

transmitted?

How large should MAX be
such that we are sure that
the ABP works correctly?

only
three!

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56

goto
goto label
– transfers execution to label
– each Promela statement might be labelled
– quite useful in modelling communication protocols

wait_ack:
if
:: B?ACK -> ab=1-ab ; goto success
:: ChunkTimeout?SHAKE ->

if
:: (rc < MAX) -> rc++; F!(i==1),(i==n),ab,d[i];

goto wait_ack
:: (rc >= MAX) -> goto error
fi

fi ;

Timeout modelled by a channel.

Part of model of BRP

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 36

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 29

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57

unless
{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{

...
/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash:
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 37

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 29

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57

unless
{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{

...
/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash:
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 38

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 30

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 59

inline init_array(a) {
d_step {
i=0;
do
:: i<N -> a[i] = 0; i++
:: else -> break
od;
i=0;

}
}

inline – poor man’s procedures
• Promela also has its own macro-expansion feature using

the inline-construct.

ಥ HUURU�PHVVDJHV�DUH�PRUH�XVHIXO WKDQ�ZKHQ�XVLQJ�#define
ಥ FDQQRW EH�XVHG�DV�H[SUHVVLRQ
ಥ DOO�YDULDEOHV VKRXOG�EH�GHFODUHG�VRPHZKHUH�HOVH

Should be declared somewhere
else (probably as a local variable).

Be sure to reset temporary variables.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 60

Properties (1)

• With SPIN one may check the following type of properties:

– deadlocks (invalid endstates)

– assertions

– unreachable code

– LTL formulae

– liveness properties

• non-progress cycles (livelocks)

• acceptance cycles

I |M
 0RGHO�FKHFNLQJ�WRROV�DXWRPDWLFDOO\ YHULI\�ZKHWKHU

KROGV��ZKHUH�M LV�D��ILQLWH�VWDWH��PRGHO RI�D�V\VWHP�DQG�
SURSHUW\ I LV�VWDWHG�LQ�VRPH�IRUPDO�QRWDWLRQ�

Elsa L Gunter CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 23, 2014 39

/ 19

	SPIN Syntax

